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Automated Detection of Software Performance
Antipatterns in Java-based Applications

Catia Trubiani, Riccardo Pinciroli, Andrea Biaggi, and Francesca Arcelli Fontana

Abstract—The detection of performance issues in Java-based applications is not trivial since many factors concur to poor performance,
and software engineers are not sufficiently supported for this task. The goal of this manuscript is the automated detection of performance
problems in running systems to guarantee that no quality-based hinders prevent their successful usage. Starting from software
performance antipatterns, i.e., bad practices (e.g., extensive interaction between software methods) expressing both the problem and
the solution with the purpose of identifying shortcomings and promptly fixing them, we develop a framework that automatically detects
seven software antipatterns capturing a variety of performance issues in Java-based applications. Our approach is applied to real-world
case studies from different domains, and it captures four real-life performance issues of Hadoop and Cassandra that were not predicted
by state-of-the-art approaches. As empirical evidence, we calculate the accuracy of the proposed detection rules, we show that code
commits inducing and fixing real-life performance issues present interesting variations in the number of detected antipattern instances,
and solving one of the detected antipatterns improves the system performance up to 50%.

Index Terms—Software performance antipatterns, Java-based applications, Dynamic analysis.

F

1 INTRODUCTION

THE performance evaluation of Java-based applications
is challenging due to many variabilities, such as soft-

ware failures and workload fluctuation in requests [1], [2],
[3], that may occur when the system is running and in-
evitably contribute to affect the overall service quality [4],
[5], [6]. Understanding if an application can always meet the
desired performance (e.g., the system response time must be
shorter than 5 seconds or resource utilization must be lower
than 80%) is of key relevance since it impacts the perception
of end-users and their satisfaction while interacting with the
system [7], [8].

In the literature, several approaches have been proposed
for modeling, analyzing, and optimizing the performance
of software applications [9], [10]. Two main directions have
been pursued: (i) model-based performance analysis, i.e.,
performance models are built out of Java applications [11],
[12] and used for predictions; (ii) application performance
monitoring, i.e., tools that collect trace data for inspec-
tion [13], [14]. Motivated by the recent trend of integrating
development (Dev) and operations (Ops) teams, processes,
and tools [15], [16], [17], it is necessary that software en-
gineers are aware of the performance evolution of their
applications. If performance issues are detected, then en-
gineers must also be able to promptly fix such issues. To
this end, several approaches emerged, e.g., automated per-
formance tests [18] to guarantee the prompt identification
and fixing of performance degradation, or performance load
testing [19] to evaluate software refactorings that most likely
lead to performance improvement. However, most of the
approaches in the literature, e.g., [2], [20], [21], [22], act
statically on the implementation code. A recent study [23]
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pointed out that static code analysis may fail in capturing
complex root causes of real-life performance issues, e.g.,
the interactions between procedures that occur when exe-
cuting the source code only. Hence, in this paper we aim
to exploit dynamic information, which is fundamental for
the detection of some performance issues, at the cost of
deploying a testing environment for profiling applications
and introducing runtime efforts.

We focus our attention on identifying performance issues
in Java-based applications, i.e., the target systems under
analysis are already in production and subject to multi-
ple variations, such as changes in the execution environ-
ment. As a motivating example, let us consider a real-life
case study [24] where a performance overhead of 17% is
experienced for the continuous integration of a software
release. The diagnosis of performance problems is indeed
non-trivial, a study in [25] indicates the Apache project,
i.e., relevant to our research since Java is used, with the
longest average diagnosis time (194 days). Our goal is to
improve the system performance by identifying the bad
practices of software components and fixing them before the
system becomes unusable. Let us consider as an example of
bad practice a software component that monopolizes the
processing (namely the Blob [26]). This implies a single and
complex controller component that orchestrates the compu-
tation by extensively interacting with other components.
As a consequence, the system response time can suffer by
such a behaviour. To fix this problem, it would be bene-
ficial to involve other software components and delegate
them part of the overall computation. This way, the system
response time can improve since it benefits from some
processing running in parallel. To achieve this objective
of identifying bad practices, we use software performance
antipatterns [26], [27] since they include the description of
both (i) the problems leading to performance flaws, and (ii)
the best practices aimed to get performance improvements.
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In the context of Java-based applications, we focus on
the following seven software performance antipatterns: 1)
Circuitous Treasure Hunt (CTH), 2) Extensive Processing
(EP), 3) Wrong Cache Strategy (WCS), 4) Blob, 5) Tower
of Babel (ToB), 6) Empty Semi Trucks (EST), and 7) Exces-
sive Dynamic Allocation (EDA). Further details on these
antipatterns and the motivation on the selection of these
antipatterns are provided in Section 3.3. We develop a
framework to automatically detect these seven performance
antipatterns and we evaluate it on a variegate set of real-
world applications. The conducted experimentation advo-
cates the following main findings: (i) our framework is effi-
cient, the detection of antipatterns is performed, on average,
in less than a minute; (ii) our framework is accurate, the
F1 score is larger than 85% in the considered cases; (iii)
our framework advances state-of-the-art methodologies, it
detects complex performance problems not recognized by
other tools; (iv) antipattern-based refactoring can lead to
system performance improvement up to 50%. The main
contributions of our work are as follows:

• the specification of seven software performance an-
tipatterns that are customized to verify a set of prop-
erties for Java-based applications;

• the development of JPAD, Java Performance Antipat-
tern Detector, a framework that automatically detects
the seven software performance antipatterns;

• the evaluation of JPAD efficiency and accuracy on
five real-world applications with different complex-
ity and representative of multiple domains;

• the comparison of JPAD with state-of-the-art ap-
proaches on the detection of real-life performance
issues in nine code commits of two further systems;

• empirical evidence on the benefit of solving perfor-
mance antipatterns.

In summary, our approach advocates the usage of soft-
ware performance antipatterns as valuable support to auto-
matically detect performance issues of Java-based applica-
tions. The benefit is that software engineers are promptly
informed of software components showing specific bad
practices and candidate of being refactored.

The rest of the manuscript is organized as follows.
Section 2 reviews the related work. Section 3 describes our
approach, and we discuss the key properties of software
performance antipatterns, thus to motivate the choice of
implementing some of them. Details on detection algo-
rithms for the seven implemented software performance
antipatterns are provided in Appendix A, the rationale for
not implementing some of them is explained in Appendix B.
Research questions, analyzed software systems, and the ex-
perimental evaluation are presented in Section 4. Threats to
validity are argued in Section 5. A discussion on limitations
of the approach is reported in Section 6. Concluding remarks
and possible directions for future research are outlined in
Section 7. Replication data are publicly available [28].

2 RELATED WORK

Our work mainly relates to three streams of research, i.e.,
architectural antipatterns, code smells, and Java-specific

performance issues that are briefly reviewed in the follow-
ing. This manuscript moves a step forward in the attempt
of establishing synergies between architectural antipatterns
and code smells for the performance evaluation of Java
applications.

Architectural antipatterns. In the broader context of (anti)-
patterns and quality attributes (e.g., reliability, security),
there are several works that aim to match their connections,
e.g., [29], [30], [31], [32]. When focusing on performance-
related concerns there is much less work. Software perfor-
mance antipatterns are studied first by Smith [26], [27] who
provides the preliminary definitions based on her experi-
ence. The specification is expressed in natural language and
is technology-independent, meaning that antipatterns can
be customized in many different contexts. Other researchers
redefine these natural lagnuage definitions using first-order
logical predicates later applied to architectural design mod-
els [33] and recently adapted to further architectural for-
malism such as probabilistic model checking [34]. A first
attempt of adopting architectural antipatterns in running
systems is provided in [35], where problem root causes
are isolated and a graph of dependencies is built to match
problems with the specification of antipatterns.

Static and dynamic approaches for code smells. In the lit-
erature, extensive work is devoted to investigate code
smells [36], [37], [38], and several investigations are per-
formed, e.g., the analysis of (i) inter-smell interactions to
understand their effects [39] and (ii) sequences of different
kinds of bad smells to improve detection and solution [40].
Static analysis techniques are adopted to locate bugs in
software, e.g., performance bugs that waste processing time
due to superfluous loop iterations are detected in [21], and
tools like FindBugs [41] can find potential root causes for
performance antipatterns. Object-Relational Mapping (i.e.,
non-trivial database access) is exploited in [20] where static
analysis can detect a huge number of performance antipat-
tern instances. Li et al. [22] keep using static analysis, but
focus on problematic duplicate logging code smells to em-
phasize that logging code is highly associated with both the
structure and the functionality of the surrounding code. An
approach to identify code changes that may potentially be
responsible for performance regressions is proposed in [42],
but it does not analyze root causes behind such regressions.
An exploratory study on performance regressions is pre-
sented in [43] where six code level root-causes are identified,
but they mainly refer to inner changes, e.g., function calls or
parameter values. An attempt of using static and dynamic
metrics is proposed in [44] where evolutionary algorithms
are adopted to detect performance regressions, however
causes are not treated. Static and dynamic data is exploited
also in [45] where a selection of benchmarks limits runtime
overhead at the cost of missing the prediction of some per-
formance issues. Preventing performance issues before the
commit of code changes is pursued in [23] where random
forest classifiers are trained on large datasets of performance
regressions. More recently, an experience report on locating
the root causes of performance regressions is presented
in [46] where web-access logs are exploited to tune the
expected workload. However, this report targets only web-
based systems, and machine learning techniques may lack to
capture the relationship between problematic runtime activ-
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ities and their impact on system performance. Summarizing,
the main difference between static and dynamic approaches
is that the former can detect some performance issues dur-
ing the development process and cost fewer efforts, whereas
the latter can benefit from runtime information probably
capturing a larger set of issues (as confirmed in [23]), with
the drawback of introducing monitoring efforts.

Java-specific performance issues. Our work mainly relates to
Java-specific performance antipattern definitions, and there
are several approaches that identify different bad practices
in Java platforms and APIs [47], [48], [49], [50]. The dif-
ficulty of evaluating the performance of Java applications
is acknowledged also in the testing domain; Java open
source projects are usually subject to a limited number
of performance tests that are rarely updated and typically
maintained by a small group of developers [51]. In [52]
a rule-based approach is proposed to detect performance
antipatterns from runtime traces while targeting Java EE
antipatterns. In [53] load testing and profiling data are
exploited to detect bad practices in Java applications. This
approach leverages performance experts to identify prob-
lematic snapshot(s), and the antipattern detection is per-
formed (similarly to approaches dealing with performance
regressions [23], [45]) comparing snapshots with the recog-
nized problematic one(s).

To the best of our knowledge, there are few attempts
in the direction of bridging performance and code-related
issues with performance antipatterns. Our approach relies
on dynamic analysis and adopts software performance an-
tipatterns to identify bad practices arising when the system
is in execution. The main difference w.r.t. work more closely
related to ours [35], [53] is that we consider a plethora
of seven software performance antipatterns applied to a
broad set of real-world case studies. Experimental results
are promising to foster further research.

3 OUR APPROACH

This section introduces the approach proposed to detect
software performance antipatterns in Java applications. The
design of the approach is driven by the following key in-
sight. Each performance antipattern describes a bad design
practice that can be (partially) observed and checked by
a combination of a particular set of system key properties
including design characteristics (e.g., large number of calls)
and performance metrics (e.g., long execution time). Our
detection approach relies on monitoring these system key
properties. A system component is recognized to be an
antipattern when its design characteristics and/or perfor-
mance metrics deviate most from the average values, as
calculated considering all other components belonging to
the same system.

Figure 1 depicts the workflow of our approach to auto-
matically detect software performance antipatterns in Java
applications. First, a load test suite is defined for each sys-
tem, and it is used to simulate the interaction of users with
the system under analysis. Then, the system under analysis
is launched and the profiler is attached. We are aware
that runtime performance monitoring of Java applications
is expensive and the profiling process can generate over-
head, however this is also assessed as a necessary task to
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Fig. 1: High-level workflow of our approach.

collect the performance characteristics of interest [54]. After
attaching the profiler, test suites are executed. During their
execution, we periodically capture snapshots that contain
the readings related to CPU, threads, and memory, later
exported in CSV or XML files, according to the represented
data. These files are provided as input to JPAD, i.e., the
tool we developed for the automatic detection of software
performance antipatterns.

In the sequel of the section, we detail the operational
tasks of the proposed framework, i.e., how the load testing
is performed, the technology used, and the criteria adopted
for defining the test suite. Then, we present the application
profiler used to monitor the systems under analysis during
the execution of the load tests. We also describe the seven
software performance antipatterns that we implement into
JPAD to enable their automatic detection. Starting from the
natural language definition of antipatterns, the detection
rules are expressed in terms of the data acquired through the
profiler. JPAD takes as input the readings from the profiler
and makes use of such data to automatically perform the
detection of software performance antipatterns.

JPAD is a JavaFX application that allows the user to
load the profiling data exported from YourKit (i.e., the input
files) and contains an embedded console where the results
are reported. The tool works with thresholds and offsets
that establish when performance issues arise. A threshold
value t represents a boundary on a specific performance
metric value v, and JPAD verifies if v > t. An offset value
o is instead a percentage addendum that allows to deviate
from systems’ properties extracted as average values, i.e., a
property on a specific system component (p) is compared
with the average across all components (P ), and JPAD
verifies if p > P + P · o%. Note that both thresholds and
offsets are used to evaluate a specific test input. The goal
is to detect those system characteristics that deviate, under
the same input assumptions, with a certain margin from
requirements and/or average values. For instance, 10% can
be set as a threshold for the CPU usage, and JPAD con-
siders suspicious all CPU resources showing larger values.
As a further example, let us consider 5% as the offset on
method number of calls. JPAD calculates the average value
(considering the total number of calls across all the system
methods) and augments such average by 5%. This way,
JPAD detects as suspicious all the methods whose number of
calls deviates by 5% from the average within a specific test
input. Note that these threshold and offset settings can be
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modified by users in case further knowledge is available and
other values are considered more appropriate. Sensitivity
analysis on threshold values is discussed in Appendix C.

3.1 Load testing
To define the required tests for each system under anal-
ysis, we explore the target application to understand key
functionalities in execution. We are aware that designing
load tests represents a threat to the internal validity of the
approach. Indeed, we may miss some functional test cases,
and there might be functionalities that are not monitored.
Hence, there is a risk of not detecting some antipatterns and
consequently not capturing performance issues. This threat
is smoothed by delegating the design of load tests to soft-
ware engineers that can decide which system functionalities
require performance testing. To support software engineers
in this task, as a rule of thumb, we foresee the selection of the
software component(s) showing the highest CPU utilization
as candidate to load testing. To support this guideline, in
our experimentation (see Section 4) we show that such a
selection leads to detect real-life performance issues.

3.2 Application profiling
To profile the applications under analysis during their exe-
cution, we use the YourKit Java Profiler [55]. This decision is
motivated by several reasons. First, YourKit is widely used
for the performance evaluation of real-world applications
both in industry [56] and in academia [53], [57]. Second, pre-
cise instructions about reducing or avoiding performance
overhead (generated from the profiler) are provided [58].
Third, YourKit is a powerful application profiler, it monitors
several aspects of the profiled system, and provides a view
for multiple system features. Besides, the output of YourKit
(i.e., the readings, see Figure 1) can be easily exported in
different data formats. For the purpose of this work, we
monitor usage statistics: CPU usage, memory usage, CPU
hotspots, call tree, blocked threads, and garbage collected
objects. CPU and memory usage measure the percentage
of used resources during the execution of the application.
CPU hotspots are those methods that spend the longest time
on the CPU. Call tree is divided in two different views:
(i) a merged call tree that shows a top-down call tree of
all application threads merged together into a single tree,
and (ii) a call tree by thread that shows an individual top-
down call tree for each application thread. From these files
we can extract further information, e.g., callers and callees
of each method. Blocked threads represent threads that
fail to immediately enter the synchronized method/block.
Garbage collected objects allow estimating the load of the
garbage collector. All these statistics are fed to JPAD that
uses them to detect software performance antipatterns.

3.3 Antipattern detection
The detection of software performance antipatterns relies
on our interpretation of the natural language specification
of software performance antipatterns [26]. Specifically, after
extracting key properties, we implement the antipattern
detection rule if a match with profiling data exists. Our
effort is mainly devoted to match high-level guidelines and

make them concrete for the inspection of Java applications.
In this context, the difficulty relies on combining different
sources of information (e.g., a class calling a high number
of methods, high CPU usage), since the intrinsic nature of
software antipatterns is to look for various performance
problems that may arise when applications are running.
Since the specification of antipatterns cannot be completely
precise [26], the conditions and key properties we check as
our detection rules approximate the antipatterns. These con-
ditions are neither sufficient nor necessary, we empirically
validate their relevance on spotting performance issues.

Table 1 reports a subset of seven software performance
antipatterns proposed in [26], and we motivate in the
following the choice of implementing them. The reason
why some antipatterns cannot be automatically detected is
argued in Appendix B. The first column reports the name
of the performance antipatterns, and the second column
describes the problem expressed in natural language. The
third column lists the extracted key properties (along with
the implemented helper functions) and provides a match
with profiling data. The fourth column lists thresholds and
offsets that are included in the detection algorithms. Helper
functions are briefly described in Table 2, thresholds/offsets
are presented in Table 3 along with the heuristics adopted in
case users do not define their own preferences on perceived
performance issues. Offsets are all set to 5% since we are
interested to capture small deviations from average values.
Thresholds are set to 10%, we refer to [59] where the CPU
load in the idle phase is estimated to be 7% on average, and
we are interested to exclude outliers and fluctuations that
might be due to system’s internal routines.

The detection algorithms and implementation details of
these antipatterns are given in Appendix A, along with
the match between textual descriptions and detection rules.
In the following, we briefly discuss our interpretation of
antipatterns, and their key properties.

Circuitous Treasure Hunt (CTH) occurs when a Java appli-
cation must perform a large number of (database) queries to
manage a request. This problem can be generalized consid-
ering a method that performs a chain of queries where the
result of one query is used to build the next one, instead
of writing a single, and more complex request. As key
properties, we check the average number of calls performed
by each thread (call-tree-by-thread view of YourKit), along
with the average processor utilization (chart-cpu-usage view
of YourKit) indicating if the system performance suffers.

Extensive Processing (EP) occurs when a long running job
monopolizes the processor and creates a queue of processes
that cannot be executed until the computation of such job
is completed. As key properties, we monitor the average
number of blocked threads (monitor-usage view of YourKit),
and the execution time of Java methods (call-tree-all-threads
view of YourKit), selecting only those methods that are
showing a large number of the identified blocked threads.

Wrong Cache Strategy (WCS) occurs when too many ob-
jects (or objects hardly ever used) are cached. This leads to
generate performance overhead resulting in high memory
usage. As key properties, we check the average memory
usage of methods (method-list-allocation view of YourKit),
and we are interested to verify whether the memory is more
used than the processor (method-list-cpu view of YourKit).



JOURNAL OF LATEX CLASS FILES, VOL. XX, NO. X, MONTH 20XX 5

TABLE 1: Software Performance Antipatterns - key properties extracted from natural language specification [26].

Name Problem specification Key properties (and helper functions) Thresholds
and offsets

Circuitous
Treasure
Hunt

Occurs when an object must look in several places
to find the information it needs. If a large amount
of processing is required for each look, perfor-
mance will suffer.

Large number of calls (getMethodCountMap, getAvgMethod-
Count), high execution time (getAvgTime), and high re-
sources utilization (getAvgCpuUsage).

countOffset,
cpuTh

Extensive
Processing

Occurs when extensive processing monopolizes
the processors and impedes the overall response
time.

Large number of blocked threads (countThreads, count-
BlockedThreads), high execution time (getTotExecTime,
getAvgExecTime, getHsExecTime).

execTime-
Offset

Wrong
Cache
Strategy

Caching too many objects (or objects that are rarely
used) quickly changes the advantage of caching
into a disadvantage due to higher memory usage.

High memory usage from methods (getAvgMemUsage, getH-
sMemUsage), i.e., larger than the average processor usage
(getHsCpuUsage).

memUsage-
Offset

Blob Occurs when a single class either (i) performs all
the work of an application or (ii) holds all the
application data. Either manifestation results in
excessive message traffic that degrades the perfor-
mance.

Large number of calls performed and received by the
methods (getCallersMap, getCalleesMap, getAvg) reflecting
on high processor and/or memory utilization (getAvgCpu-
Usage, getAvgMemUsage).

msgOffset,
cpuTh,
memTh

Tower of
Babel

Occurs when processes excessively convert, parse,
and translate internal data into a common ex-
change format.

Large execution time of methods (getMethodCallsMap, get-
TotExecTime, getAvgExecTime, getHsExecTime) due to specific
activities (cpu-hotspots).

execTime-
Offset

Empty Semi
Trucks

Occurs when an excessive number of requests is
required to perform a task. It may be due to in-
efficient use of available bandwidth, an inefficient
interface, or both.

Large number of method calls (getCalleesMap, getAvg, count-
Calls) whose execution time (getCvTime) follows a determin-
istic distribution.

msgOffset

Excessive
Dynamic
Allocation

Occurs when an application unnecessarily creates
and destroys large numbers of objects during its
execution. The overhead has a negative impact on
performance.

Large number of objects stored by the Java garbage collector
(getGcObjs, getHsGcObjs) , high memory utilization (getAvg-
MemUsage).

memTh,
gcObjects-
Offset

TABLE 2: Software Performance Antipatterns - helper functions.

Name Description

getMethodCountMap It calculates the minimum, maximum, or average (depending on the option input parameter) number of calls in a method

getAvgMethodCount It calculates the average number of calls in a specific hotspot method, to be compared with the average of all hotspots

getAvgTime It calculates the average execution time of all hotspots, to be compared with the executime time of a specific hotspot method

getAvg[Cpu,Mem]Usage It calculates the average utilization values showed by all system hardware (CPU or memory) resources

count[Blocked]Threads It counts the number of (blocked) threads, to be compared with active threads to understand delays in the execution of methods

get[Tot,Avg,Hs]ExecTime It retrieves the (total, average, or related to a specific hotspot method) execution time, to be compared with other methods

get[Callers,Callees]Map It retrieves all methods that are callers or calles, and it is used to quantify the number of calls performed/received by a method

getAvg It takes as input parameter a map of methods (e.g., through getMethodCallsMap, see next helper function) and calculates the average

getMethodCallsMap It retrieves all methods that are invoked by other methods, to be compared with average values for spotting most invoked methods

countCalls It takes as input a callee method and it calculates the average number of times that hotspots invoke their callees

getCvTime It takes as input a callee method and it retrieves the coefficient of variation of the callee’s service time

get[Hs]GcObjs It retrieves the average number of garbage collected objects in the (hotspot) methods, thus to spot if there are many unused objects

TABLE 3: Software Performance Antipatterns - thresholds and offsets.

Name Description Heuristic

countOffset Addendum for methods’ number of calls Set to 5%, it augments the average value for the number of methods’ calls

cpuTh Upper bound for CPU utilization Set to 10%, lower values are considered part of the system’s internal routines

execTimeOffset Addendum for methods’ execution time Set to 5%, it augments the average value for the execution time of methods

memUsageOffset Addendum for memory utilization Set to 5%, it augments the average value for the memory resources utilization

msgOffset Addendum for number of exchanged messages Set to 5%, it augments the average value for the methods’ exchanged messages

memTh Upper bound for memory utilization Set to 10%, lower values are considered part of the system’s internal routines

gcObjectsOffset Addendum for number of garbage collected objects Set to 5%, it augments the average value for the number of garbage collected objects

Blob occurs in two different scenarios that contribute to
distinguish two different types of antipattern instances in
Java applications, i.e., Blob-Controller and Blob-DataContainer.
The former is observed when a class centralizes many

responsibilities, delegating minor roles to other classes.
Classes affected by this problem usually are complex con-
trollers which depend on simpler classes (with little to
no computation). The latter case is observed when a class
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includes most of the application data and other functions
need to access that class to retrieve/update the data. As
key properties, we monitor the average number of calls
performed and received by the methods (call-tree-all-threads
view of YourKit) to determine if these methods can be classi-
fied as potential controllers or data containers, respectively.
Besides, we also check if such large number of calls impacts
on the average usage of processor and memory (chart-cpu-
usage and chart-heap-memory-usage views of YourKit).

Tower of Babel (ToB) occurs when some data is translated
into an exchange format, such as XML, by the sending
process. This data is later parsed and translated into an
internal format by the receiving process. This means that the
system may spend most of its time processing the text when
the translation and parsing of data formats are excessive. As
key properties, we check all the methods showing a large ex-
ecution time (call-tree-all-threads view of YourKit), and then
we inspect the names of such methods (cpu-hotspots view of
YourKit). We check if there is a match with some specific
keywords (i.e., “converse”, “parse”, and “translate”), thus
to associate the performance overhead to the processing of
exchange format data.

Empty Semi Trucks (EST) occurs when an excessive num-
ber of requests is required to perform a task. As key proper-
ties, similarly to the Blob-controller, we consider the number
of calls performed by the methods (call-tree-all-threads view
of YourKit), and we verify if the execution time of such calls
shows a small coefficient of variation, i.e., the execution time
follows a deterministic distribution (call-tree-all-threads view
of YourKit). This way, we aim to capture the peculiarity
of this antipattern when inefficiently using the bandwidth
and/or interfaces.

Excessive Dynamic Allocation (EDA) occurs when an ap-
plication unnecessarily creates and destroys objects. As key
properties, we monitor the objects collected by the Java
garbage collector (method-list-garbage view of YourKit), and
we want to recognize those situations leading to a perfor-
mance overhead, i.e., the average memory utilization (chart-
heap-memory-usage view of YourKit) is high.

It is worth remarking that our detection algorithms
may be orthogonal, i.e., they may return the simultaneous
occurrence of multiple antipatterns since they share the
verification of some performance indices, e.g., the CPU
utilization. This is not a drawback of the approach since
it may happen that a performance issue may be caused by
the simultaneous presence of multiple bad practices [60].

4 EXPERIMENTATION

This section is organized as follows. We first present the
research questions (Section 4.1), followed by the description
of the analyzed real-world applications (Section 4.2). We
describe the experiment design (Section 4.3), and we discuss
the obtained experimental results (Section 4.4).

4.1 Research questions

The purpose of our experimental evaluation is threefold: (i)
it shows that JPAD is efficient and accurate when applied
to real medium/large-sized systems; (ii) it compares JPAD
with state-of-the-art approaches on the detection of real-life

performance issues; (iii) it provides empirical evidence on
the usefulness of detecting antipatterns. In particular, we
aim to answer three research questions:

RQ1 Efficiency and accuracy of the antipatterns’ detection
rules: Are the proposed detection rules efficient and
accurate? Does JPAD efficiently detect antipattern
instances in real-world case studies? Motivation. We
want to provide developers with an efficient and
accurate framework that points out performance is-
sues, if any. By evaluating the efficiency of JPAD, we
can understand whether developers are motivated to
apply our approach in practice.

RQ2 Comparison with state-of-the-art approaches: Are the
proposed detection rules comparable to other tech-
niques in the literature? Does JPAD capture complex
performance problems that are not recognized by
available tools? Motivation. We want to compare our
framework with state-of-the-art approaches that deal
with the detection of performance issues. By com-
paring JPAD to other tools, we can study whether
developers are motivated to use our framework.

RQ3 Implication of applying antipattern-based refactorings:
What happens when an antipattern is solved? How
does the number of detected antipattern instances
for the refactored system change? What is the ef-
fect on the overall system performance? Motivation.
The goal of our approach is to spot performance
problems, so that developers are aware of possible
shortcomings in some portions of the code. In this
research question, we aim to answer at which extent
our approach benefits developers interested to know
if code fixings improve the system performance.

To answer the first two research questions, we analyze
real-world Java applications under different loads, i.e., vary-
ing the number of clients and the execution time. For each
combination of (i) number of clients and (ii) duration (in
minutes), the application is profiled, data is collected, and
JPAD is used to detect the software performance antipat-
terns. Moreover, to further stress the benefit of the proposed
framework and to answer the third research question, we
provide empirical evidence of its impact by solving one
instance of detected antipatterns (for one of the analyzed
systems), and showing variations in the number of detected
instances and the system performance.

4.2 Analyzed systems
We select five Java applications that are highly concerned
with their performance and have been studied in prior
research [46], [61], [62]. These applications show a different
complexity (in terms of number of classes) and belong to
different domains, see Table 4 for their main characteristics.
The rationale for selecting these five subject systems is that
they provide evidence of all the seven performance antipat-
terns, as later described in the experimental results (see
Section 4.4). Specifically, systems from [46] do not include
ToB and EST antipattern instances. We select one system
from [61] to provide evidence on the ToB antipattern. To
strengthen the analysis of the EST antipattern, we borrow
the subject system used in [62]. Hereinafter, a brief descrip-
tion of the analyzed systems is provided.
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TABLE 4: Analyzed systems.

Name Version Domain # of Classes

CloudStore 2 E-commerce 68
TeaStore 1.4.1 Microservices 138
WebGoat 8.0.0.M26 E-learning 301
TrainTicket 1.0 Microservices 584
OpenMRS 2.9.0 Medical Record System 1093

TABLE 5: Analyzed issues extracted from Chen et al. [23].

Name Issue ID Issue fixing Issue inducing
commit commit

Hadoop
YARN-4307 308d63f e914220

7af5d6b
YARN-7102 ff8378e 528b809
HDFS-12754 738d1a2 decf8a6

Cassandra CASSANDRA-13794 f93e6e3 88d2ac4

• CloudStore [63] is a free software synchronizing files
between multiple devices. Its primary focus is on
preventing data loss and unauthorized access.

• TeaStore [64] emulates a basic web store for auto-
matically generated tea and tea supplies. It has been
published in [65], and later largely used as a micro-
service reference system and test application.

• WebGoat [66] is a deliberately insecure web applica-
tion maintained by OWASP and designed to teach
web application security lessons.

• TrainTicket [67] is the largest benchmark for mi-
croservice architectures in the literature. It provides
train ticket booking functionalities and is used for
fault analysis and error prediction [62], [68].

• OpenMRS [69] is a free medical record system for
health care providers. It is a modular open-source
web application used by over 40 countries to im-
prove health care delivery in resource-constrained
environments.

Moreover, to compare JPAD with state-of-the-art ap-
proaches [23], [45], [53], we consider four real-life perfor-
mance issues (see details in Table 5) of two other systems:

• Hadoop [70] is a framework which performs data
processing in a reliable, efficient, high fault tolerance,
low cost, and scalable manner.

• Cassandra [71] is a distributed NoSQL database
management system; fault-tolerance on commodity
hardware makes it suitable for mission-critical data.

Table 5 reports the code commits (inducing and fix-
ing the four real-life performance issues) that we analyze,
according to the study on performance regressions pre-
sented in [23]. The motivation of selecting these specific
four performance issues is the following. Hadoop commits
are evaluated in [23] by means of multiple performance
metrics (i.e., response time, CPU and memory utilization,
I/O operations) and we focus on those issues that have
been highlighted as particularly complex, since such issues
are not predicted by any of the considered metrics. About
Cassandra, there is only one issue that is not predicted by
PerfJIT in [23], and this is why we concentrate our effort on
investigating that specific issue. Summarizing, our inves-
tigation includes those specific four issues (triggering the

TABLE 6: Threshold values used for analyzing systems with
#clients = 25 and duration = 3 minutes.
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H countTh 309 148 170 1198 108
cpuTh 10% 10% 10% 10% 10%
option avg avg avg avg avg

EP execTimeTh 5.29% 5.40% 5.88% 5.00% 5.10%

W
C

S

memUsageTh 16% 16% 13% 27% 76%

Bl
ob

callersTh 19.36 24.00 4.76 9.28 8.58
calleesTh 426.75 427.12 596.05 2637.25 1562.40

cpuTh 10% 10% 10% 10% 10%
memTh 10% 10% 10% 10% 10%

To
B

execTimeTh 5.29% 5.40% 5.88% 5.00% 5.10%

ES
T

msgTh 1.05 1.05 1.40 1.47 1.58

ED
A gcObjectsTh 8711349.8 4387604.0 1562411.2 3652923.5 3538209.5

memTh 10% 10% 10% 10% 10%

analysis of nine code commits) since they are more relevant
to conduct a comparison.

4.3 Experimental setup
In the following, we discuss the design choices taken to run
experiments and avoid biases in results.

System workload specification. To avoid biases when pro-
filing applications, we test several workloads acting in the
considered systems for a different duration. The choice on
the number of clients and the duration of load testing is
not trivial, however our assumption is that this is decided
by software developers that are aware of load conditions
and system’s dynamics. Subject systems in Table 4 run for 3,
6, and 12 minutes with 25, 50, 75, and 100 clients. A larger
variation in the number of clients is considered for the issues
listed in Table 5 and related to Hadoop and Cassandra; these
systems are tested with 1, 10, 100, 500, and 1k clients run-
ning for 3, 6, and 12 minutes. Each combination of number
of clients (C) and duration of the testing (D) represents an
input we use in our detection. Such a combination leads
to a system configuration that is labeled in the following as
C−D, for instance the system configuration “1000-6” means
to consider 1000 clients with 6-minute duration of testing.
Overall, 300 different system configurations are analyzed to
explore a variegate set of systems’ characteristics.

Load test definition. To avoid biases in the load testing,
we explore benchmarks stressing different aspects (e.g.,
input/output operations, end-users services) of considered
applications. For instance, we make use of available bench-
marks for Hadoop and Cassandra (i.e., TestDFSIO [72]
and Cassandra Stress [73]) stressing write and read oper-
ations. Locust [74] (i.e., a Python-based load testing tool)
is adopted for systems reported in Table 4 since ready-
to-use benchmarks are not available. We stress end-users
services identified as crucial for the application, e.g., in
TrainTicket we generate requests for monitoring the secu-
rity service invoked when users make a reservation. As
anticipated in Section 3.1, to support software engineers in
the selection of system functionalities to be monitored, as a
rule of thumb, we consider the CPU utilization of system
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(a) NodeManager
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Fig. 2: CPU usage over 12 minutes for the five Hadoop components. The profiled Hadoop commit is decf8a6.

TABLE 7: Threshold values used for analyzing Hadoop (two components) and Cassandra with #clients = 1k and
duration = 12 minutes. The symbol “–” indicates that a threshold is not calculated due to lack of data.
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C
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countTh – – – – – – – – – – – – – – 44 26
cpuTh 10% 10% 10% 10% 10% 10% 10% 10% 10% 10% 10% 10% 10% 10% 10% 10%
option avg avg avg avg avg avg avg avg avg avg avg avg avg avg avg avg

EP execTimeTh 5.06% 5.04% 5.06% 5.06% 5.04% 5.02% 5.02% 5.29% 5.21% 5.26% 5.25% 5.39% 5.32% 5.28% 5.24% 5.25%

W
C

S

memUsageTh 5.00% 5.00% 5.00% 5.00% 5.00% 5.00% 5.00% 5.00% 5.00% 5.00% 5.00% 5.00% 5.00% 5.00% 13.00% 26.00%

Bl
ob

callersTh 11.12 11.95 11.89 11.33 10.15 10.26 9.56 2.42 2.91 2.51 2.59 2.04 2.28 2.31 4.61 4.51
calleesTh 1.05 1.05 0.70 1.05 0.70 – – – – – – – – – 82.35 44.28

cpuTh 10% 10% 10% 10% 10% 10% 10% 10% 10% 10% 10% 10% 10% 10% 10% 10%
memTh 10% 10% 10% 10% 10% 10% 10% 10% 10% 10% 10% 10% 10% 10% 10% 10%
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execTimeTh 5.06% 5.04% 5.06% 5.06% 5.04% 5.02% 5.02% 5.29% 5.21% 5.26% 5.25% 5.39% 5.32% 5.28% 5.24% 5.25%

ES
T

msgTh – – – – – – – – – – – – – – 1.05 1.05

ED
A gcObjectsTh – – – – – – – – – – – – – – 15980736.0 16730745.2

memTh 10% 10% 10% 10% 10% 10% 10% 10% 10% 10% 10% 10% 10% 10% 10% 10%

software components. This analysis provides support to the
component choosing stage of the approach that decides
which component(s) to test, and they are given as input
to our detection. As an example, let us consider Figure 2
that shows the CPU utilization (observed when executing
I/O operations) of all Hadoop components. Results show
that two components have a non negligible utilization, see
Figures 2(a)–(b) with CPU utilization varying up to 40%:
(i) the NodeManager which is in charge of monitoring the
resource usage of a node and reporting such information to
the ResourceManager and (ii) the DataNode that stores data.
Hence, these two components are selected to be profiled.
Figures 2(c)–(e) instead indicate that there are underutilized
components: ResourceManager and NameNode show a CPU
utilization lower than 8%, whereas the CPU used by Sec-
ondaryNameNode is even less than 2%. This denotes that it is
not relevant to profile such components.

Load test execution. To avoid biases in the obtained results,
all experiments are run on a single node cluster deployed on
a dedicated machine (with a 2.80 GHz quad-core CPU and
16 GB memory) to easily monitor used resources and avoid
misleading performance results due to background activi-
ties. Readings extracted from CPU, memory, and garbage
collector snapshots taken for each configuration are fed to
JPAD that automatically detects performance antipatterns.

Antipattern detection and thresholds setup. We recall that
most of thresholds are calculated through heuristics that
consider average values and offsets, see Table 3. This means
that each system configuration includes thresholds that vary

when changing number of clients and duration. In the
following, as illustrative examples, we report the thresholds
values used with the lowest (25 clients, 3 minutes) and the
largest (1k clients, 12 minutes) boundary values adopted in
the proposed experimentation. Table 6 reports the threshold
numerical values used to analyze the systems when setting
the number of clients to 25 and the duration of the run to
3 minutes. In the first row of Table 6 we can notice that
countTh threshold is calculated on average values, and it
shows a large variation among the analyzed systems (e.g.,
108 for OpenMRS, and 1198 for TrainTicket). There are
other thresholds that vary less even if they are calculated
with average values, e.g., msgTh varies between 1.40 and
1.58. Some other thresholds are instead fixed to values
that usually are extracted from system requirements, e.g.,
memTh is fixed to 10% for all the systems. Table 7 reports
thresholds used for all commits of Hadoop (NodeManager
and DataNode) and Cassandra, when systems are loaded
with 1k clients for 12 minutes. Note that some commits do
not provide data needed to calculate the thresholds, e.g.,
738d1a2 and ff8378e lack information for deriving callesTh
related to the Blob antipattern disabling its detection. Be-
sides, the same threshold may vary differently based on the
considered applications. For example, callersTh related to the
Blob antipattern changes significantly when considering the
two Cassandra commits (i.e., 82.35 for 88d2ac4 and 44.28 for
f93e6e3) and shows slight variations when observing each
Hadoop component separately. Instead, relevant variations
of this threshold are observed also for Hadoop when the



JOURNAL OF LATEX CLASS FILES, VOL. XX, NO. X, MONTH 20XX 9

two components are compared, i.e., it varies in the range
9.56–11.95 for the NodeManager and in the range 2.04–2.91
for the DataNode. Threshold and offset values are given as
input to JPAD, and these values can be easily modified in
case system stakeholders express their own performance
requirements.

Summarizing, our experimental setup includes the fol-
lowing inputs: (i) system workload specification, i.e., num-
ber of clients and duration of the testing, (ii) load test
definition, i.e., which component(s) to test, and (iii) thresh-
old and offset setup, i.e., numerical values for antipatterns’
thresholds and offsets. Our experimentation investigates the
variation of these inputs and how they affect the detection
accuracy and results, see more details in Tables 8–12, and
Appendix C.

4.4 Experimental results

This section presents experimental results answering our
three research questions (see Section 4.1).

4.4.1 Effectiveness of the antipatterns’ detection rules
To answer RQ1, Table 8 shows the software performance
antipattern instances detected by JPAD for each system,
when varying the number of clients and the monitoring
duration. The last column of Table 8 shows the detection
time (in seconds), i.e., the time required by JPAD to complete
the analysis. This way, we aim to analyze the scalability of
the tool when exposed to medium- and large-sized systems.

We observe that the number of detected antipatterns
may increase with the number of clients. For example, for
the WebGoat case study, the number of detected antipatterns
with 25 clients (i.e., 3, 6, 0, 5, 4, 0, 3) is smaller than (or
equal to) the case with 100 clients (i.e., 4, 7, 2, 5, 4, 0, 4).
The number of detected instances can also decrease for a
larger number of clients, e.g., OpenMRS shows 2 instances
of the CTH antipattern with 25 clients and 0 with 100 clients.
However, we notice that this may lead to generate further
instances of different antipatterns types, in fact with 100
clients we get 3 Blob instances instead of 2 (observed with
25 clients). Similarly, CloudStore shows 7 instances of the
EP antipattern and 8 instances of the Blob antipattern with
25 clients. With 100 clients instead we get 6 instances of the
EP antipattern and 7 instances of the Blob antipattern, at the
cost of 2 instances of the EDA antipattern (not observed with
25 clients). This may be due to performance issues showing
up to (previously not critical) parts of the system, i.e., af-
fecting different system elements only when the number of
clients increases. As a result, a larger workload may produce
more instances of other antipattern types.

A longer experiment duration might reduce the number
of detected instances due to the performance problems
flattening/elevating in different parts of the system depend-
ing on the application peculiarities. In our experiments,
OpenMRS benefits from a longer run time, whereas all other
systems (especially TeaStore) generally show a constant or
higher number of antipattern instances. The number of
antipattern instances detected when OpenMRS is run for
3 minutes with 25 clients (i.e., 11) decreases when the same
application is observed for 12 minutes (i.e., 3). For all other
systems, it is unlikely that the number of detected instances

TABLE 8: Analysis of how system workload specification inputs
affect the detection. Number of detected antipattern in-
stances and scalability of JPAD across the analyzed systems.

time
Config. CTH EP WCS Blob ToB EST EDA (sec)

C
lo

ud
St

or
e

25-3 2 7 0 8 0 0 0 1.9
25-6 2 7 0 8 0 0 2 0.9
25-12 2 6 0 7 0 0 2 1.0
50-3 2 8 0 8 0 0 0 1.1
50-6 2 7 0 7 0 0 0 1.1
50-12 2 8 0 9 0 0 0 1.5
75-3 2 6 0 7 0 0 0 1.0
75-6 2 7 2 8 0 0 0 1.2
75-12 2 6 0 7 0 0 0 1.6
100-3 2 6 0 7 0 0 2 1.1
100-6 2 7 2 8 0 0 2 1.4
100-12 2 6 2 7 0 0 2 1.8

Te
aS

to
re

25-3 6 9 0 6 0 0 2 144.1
25-6 6 9 0 6 0 0 2 166.8
25-12 6 9 0 6 0 0 2 183.6
50-3 6 9 0 6 0 0 2 103.8
50-6 6 9 0 6 0 0 2 158.2
50-12 6 9 0 6 0 0 2 178.8
75-3 5 9 0 5 0 0 2 172.8
75-6 6 9 0 6 0 0 2 245.4
75-12 6 9 0 5 0 0 2 218.3
100-3 5 9 0 6 0 0 2 282.5
100-6 6 9 0 5 0 0 2 257.6
100-12 6 9 0 5 0 0 2 220.3

W
eb

G
oa

t

25-3 3 6 0 5 4 0 3 29.8
25-6 3 6 0 5 4 0 3 30.6
25-12 4 7 0 6 4 0 4 29.9
50-3 4 7 2 5 4 1 4 33.6
50-6 4 7 1 5 4 1 4 37.4
50-12 4 7 2 5 4 0 4 34.3
75-3 3 6 1 5 4 0 3 30.1
75-6 4 7 2 5 4 0 4 34.4
75-12 4 7 2 5 4 0 4 33.7
100-3 4 7 2 5 4 0 4 32.6
100-6 4 7 2 5 4 0 4 30.6
100-12 4 7 2 5 4 1 4 30.2

Tr
ai

nT
ic

ke
t

25-3 1 6 1 1 0 1 0 1.0
25-6 1 4 2 1 0 1 0 1.1
25-12 1 5 2 1 0 1 0 1.1
50-3 1 4 0 1 0 1 0 1.1
50-6 1 4 0 1 0 1 0 1.2
50-12 1 5 1 1 0 2 0 1.4
75-3 1 6 1 1 0 1 0 1.3
75-6 1 5 1 1 0 1 0 1.2
75-12 1 5 1 1 0 1 0 1.4
100-3 1 5 0 1 0 1 0 1.2
100-6 1 5 0 1 0 1 0 1.3
100-12 1 5 0 1 0 1 0 1.7

O
pe

nM
R

S

25-3 2 3 2 2 0 0 2 0.6
25-6 0 0 0 1 0 0 1 0.5
25-12 0 0 1 1 0 0 1 0.7
50-3 0 1 0 1 0 0 0 0.5
50-6 0 1 0 1 0 0 0 0.5
50-12 0 1 0 1 0 0 0 0.6
75-3 1 2 1 3 0 0 1 0.6
75-6 1 2 1 3 0 0 1 0.7
75-12 0 1 0 1 0 0 0 0.6
100-3 0 2 0 3 0 0 1 0.4
100-6 0 1 0 1 0 0 0 0.6
100-12 0 1 0 1 0 0 0 0.6

decreases when the experiment duration increases. In a
few cases, the opposite trend is observed, e.g., there are 21
antipattern instances when WebGoat is run with 25 clients
for 3 minutes and 25 instances when the same application is
run for 12 minutes. A further example is represented by the
CloudStore system that shows 17 instances with 100 clients
for 3 minutes and 19 instances when running for 12 minutes.

From the collected results, no straightforward relation-
ship between the number of clients and the number of
detected antipatterns is observed. Similar observations are
drawn when considering the experiment duration since
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such duration is not linearly related with the number of de-
tected antipattern instances, thus to confirm the complexity
in the performance analysis of Java applications.

Table 8 also reports the time required by JPAD to detect
antipatterns, and we can notice that it varies between 0.4
and 282.5 seconds (i.e., 4.7 minutes). The average detection
time observed over all systems and loads is 45.9 seconds
(i.e., less than a minute) with OpenMRS and TeaStore taking
the shortest and longest average detection time (i.e., 0.6 and
194.4 seconds corresponding to 3.2 minutes), respectively.

Since TeaStore and WebGoat show the longest time to
complete the detection, we further inspect these systems.
For TeaStore we notice that Blob, ToB, and EST take longer
than other antipatterns to be analyzed. This is due to the
large size of the call tree (i.e., a key property analyzed
to detect these antipatterns, see Table 1) of the TeaStore
system. When Blob, ToB, and EST are excluded from the
analysis, JPAD takes only 1.2 seconds on average to analyze
TeaStore. For WebGoat, we observe that the detection of EST
antipattern takes longer than others, i.e., the detection takes
3.5 seconds on average when EST is excluded. We think
this is due to the large number of methods that are invoked
(namely the callees) in this application. In fact, these methods
must be analyzed by the EST detection algorithm to check
their coefficient of variation, i.e., if the execution time fol-
lows a deterministic distribution, thus to spot inefficiency
on the usage of resources.

Inspired by [46], we build a ground truth to investigate
the accuracy (along with precision, recall, and F1 score)
of our detection rules. The ground truth is constituted
of all the hotspot methods (i.e., over approximation of
the detection outcome) since JPAD analyzes their design
and performance characteristics to detect antipatterns. We
exploit the variation in the system workload specification
inputs to decide if a hotspot method is correctly detected
as source of performance problems. We determine that a
hotspot method has performance issues if it is reported as
a violation of antipatterns while analyzing different system
configurations. If a hotspot method is detected as an an-
tipattern instance in at least half (i.e., 6 over a total of 12)
analyzed configurations, then such a method is considered
as a positive instance of that antipattern, otherwise it is
classified as a negative instance. Let us consider as example
executeQuery() that is a hotspot method in OpenMRS. It
is detected as EP antipattern in 10 (out of 12) analyzed con-
figurations, hence such method is considered as a positive
instance of EP in OpenMRS. Another hotspot method of
OpenMRS is includeFragment(String, String) but
it is detected as EP antipattern in only 2 (out of 12) analyzed
configurations. Consequently, this method is considered as
a negative instance.

The confusion matrix is built for each system configu-
ration as follows. True positives (TP) are the methods for
which an antipattern instance is detected by both the ground
truth and JPAD. True negatives (TN) are those hotspot
methods that are detected as specific antipattern instances
by neither the ground truth nor JPAD. False positives (FP)
are defined by calculating hotspot methods that are detected
as antipatterns by JPAD, but are not in the ground truth.
False negatives (FN) are calculated by counting methods
that are not detected by JPAD but are in the ground truth.

TABLE 9: Confusion matrix of all considered configurations
and applications when detecting the Blob antipattern.
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The confusion matrix for the analyzed system configura-
tions in all considered applications (when detecting the
Blob antipattern) is reported in Table 9. Confusion matrices
derived for other antipatterns are omitted for the sake of
space, but they are reported as part of replication data [28].

Accuracy, precision, and recall are defined for the de-
tection of each antipattern and calculated for the analyzed
system configurations as follows: Aconf =

TP+TN
TP+TN+FP+FN ,

Pconf =
TP

TP+FP , and Rconf =
TP

TP+FN , respectively. Pconf and
Rconf are undefined when their denominators are equal to
zero. Accuracy, precision, and recall (i.e., A, P , and R, re-
spectively) are also derived for the considered applications
by averaging the results calculated for each configuration
(Mconf ), i.e.,

M =

{ ∑
conf Mconf

#conf if Mconf 6= undefined ∀ conf
undefined otherwise

,

where M = {A,P,R} and #conf = 12, i.e., the number of
analyzed system configurations in our experimentation. F1
score is defined as the harmonic mean of precision and recall,
i.e., F1 = 2 ∗ P∗R

P+R , and it is not computed in case P or R
are undefined.

Table 10 reports accuracy (A), precision (P), recall (R),
and F1 score (F1) of the proposed detection rules. It is worth
remarking that our calculations leverage the variation in
system workload specification inputs since the ground truth
(by construction) is an over approximation and TP, TN,
FP, and FN values keep into account how these inputs
affect the detection. The average accuracy (across the five
systems) is well above 90% for all antipatterns. The average
precision is also above 90%, the lowest value (i.e., 79%) is
observed in OpenMRS for the Blob antipattern. The average
recall is mostly larger than 90% except for WCS that shows
a lower value (62%); the lowest recall (58%) is observed
in TrainTicket for WCS. The F1 score shows the lowest
value (i.e., 88%) for Blob in OpenMRS as a reflection of
the previous result on precision, even if average values are
larger than 90% for all antipatterns.

RQ1: efficiency and accuracy

The proposed detection rules efficiently and accurately
capture performance issues of medium- and large-
sized systems. CTH, EP, and Blob are the antipattern
types that occur in all the analyzed systems. EP shows
the largest number of instances across all the system
configurations. WCS is the antipattern type with the
smallest number of instances. JPAD efficiently detects
the instances of the presented software performance
antipatterns, in fact the system configurations are an-
alyzed, on average, in less than a minute. TeaStore
shows a longer detection time, but in the worst case
it is less than 5 minutes. The F1 score, derived from
precision and recall metrics, is larger than 85% in all
the considered cases, denoting accurate detection rules.

4.4.2 Comparison with state-of-the-art approaches
The goal of this section is to investigate if JPAD is able

to detect a variation on the number of antipattern instances
when comparing the code commits that are known from [23]
to induce and fix real-life performance issue, respectively.

TABLE 10: JPAD detection performance. The symbol “–”
means that the metric is undefined.

CTH EP WCS Blob ToB EST EDA

CloudStore

A 1.00 0.98 0.98 0.98 1.00 1.00 0.97
P 1.00 0.98 – 0.99 – – –
R 1.00 0.93 – 0.94 – – –

F1 1.00 0.95 – 0.96 – – –

TeaStore

A 0.99 1.00 1.00 0.99 1.00 1.00 1.00
P 1.00 1.00 – 1.00 – – 1.00
R 0.97 1.00 – 0.94 – – 1.00

F1 0.99 1.00 – 0.97 – – 1.00

WebGoat

A 0.99 0.99 0.98 0.98 1.00 0.99 0.99
P 1.00 1.00 – 0.94 1.00 – 1.00
R 0.94 0.96 0.67 0.95 1.00 – 0.94

F1 0.97 0.98 – 0.94 1.00 – 0.97

TrainTicket

A 1.00 0.98 0.97 1.00 1.00 1.00 1.00
P 1.00 0.97 – 1.00 – 0.96 –
R 1.00 0.95 0.58 1.00 – 1.00 –

F1 1.00 0.96 – 1.00 – 0.98 –

OpenMRS

A 0.97 0.96 0.97 0.96 1.00 1.00 0.96
P – – – 0.79 – – –
R – 0.83 – 1.00 – – –

F1 – – – 0.88 – – –

Avg.

A 0.99 0.97 0.97 0.98 1.00 1.00 0.98
P 1.00 0.98 – 0.93 1.00 0.96 1.00
R 0.98 0.92 0.62 0.97 1.00 1.00 0.94

F1 0.99 0.97 – 0.95 1.00 0.98 0.97

Table 11 reports the performance antipattern instances
that have been found in Hadoop across 7 different code
commits. JPAD takes 0.31 seconds on average to analyze
these configurations, and it detects EP and Blob antipatterns
only, other antipatterns are not captured.

Table 11(a) focuses on the issue identified by YARN-4307
that is not predicted by state-of-the-art approaches [23], [45].
Interestingly, we can notice that the selected software com-
ponent(s) show a different number of antipattern instances.
The column reporting the fixing of the issue (i.e., 308d63f )
always shows an equal or lower number of antipattern in-
stances in all the cases for both the considered NodeManager
and DataNode components. For the NodeManager we can
notice that there are some configurations (e.g., 100-3 and
100-6) where EP instances are not detected in the commit
fixing the issue, at the cost of emerging Blob antipattern
instances. There are some further configurations (e.g., 500-
3 and 500-6) for the NodeManager where we can notice no
variation for the EP, one instance is detected in all commits.
Overall, commits inducing the issue (e914220 and 7af5d6b)
show a total of 13 and 12 EP instances across all the analyzed
configurations, respectively. The commit fixing the issue
manifests less antipattern instances, i.e., 4 EP and 2 Blob
instances. The DataNode component instead has a different
number of EP and Blob instances. Specifically, JPAD detects
a total of 14 EP instances summing up all configurations
independently of the commit. 9 and 8 Blob instances are
detected for commits inducing the issue (i.e., e914220 and
7af5d6b, respectively), and 4 Blob instances are found in the
commit solving the issue.

Table 11(b) reports the results for the YARN-7102 is-
sue. The commit fixing the issue (i.e., ff8378e) shows a
behavior similar to the previous case, i.e., there are some
configurations (i.e., 10-12, 100-6, 1000-3) of NodeManager for
which EP is solved at the cost of a new Blob instance. EP
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TABLE 11: Analysis of how load test definition inputs affect the detection. Number of EP and Blob antipatterns detected
using JPAD in two components (i.e., NodeManager and DataNode) and seven commits of Hadoop. EP and Blob instances are
reported only, JPAD does not detect other antipatterns. JPAD takes 0.31 seconds on average for the detection of antipatterns
in these configurations.

(a) YARN-4307. Commits e914220 and 7af5d6b introduce the issue, commit 308d63f solves it [23].

Config.
NodeManager DataNode

e914220 7af5d6b 308d63f e914220 7af5d6b 308d63f
EP Blob EP Blob EP Blob EP Blob EP Blob EP Blob

1-3 1 0 1 0 0 0 1 0 1 0 1 0
1-6 0 0 0 0 0 0 0 0 0 0 0 0
1-12 0 0 0 0 0 0 1 0 1 0 1 0
10-3 1 0 1 0 0 0 1 1 1 0 1 0
10-6 1 0 1 0 0 0 1 1 1 1 1 1
10-12 1 0 1 0 0 0 1 1 1 1 1 1
100-3 1 0 1 0 0 1 1 1 1 1 1 1
100-6 1 0 1 0 0 1 1 1 1 1 1 1
100-12 1 0 1 0 0 0 1 1 1 1 1 0
500-3 1 0 1 0 1 0 1 1 1 1 1 0
500-6 1 0 1 0 1 0 1 1 1 1 1 0
500-12 1 0 0 0 0 0 1 1 1 1 1 0
1000-3 1 0 1 0 1 0 1 0 1 0 1 0
1000-6 1 0 1 0 1 0 1 0 1 0 1 0
1000-12 1 0 1 0 0 0 1 0 1 0 1 0

(b) YARN-7102. Commit 528b809 introduces the issue, commit
ff8378e solves it [23].

Config.
NodeManager DataNode

528b809 ff8378e 528b809 ff8378e
EP Blob EP Blob EP Blob EP Blob

1-3 1 0 0 0 1 0 0 0
1-6 0 0 0 0 0 0 0 0
1-12 0 0 0 0 0 0 0 0
10-3 1 0 0 0 1 1 0 0
10-6 1 0 0 0 1 1 1 0
10-12 1 0 0 1 1 1 1 0
100-3 1 0 0 0 1 1 1 0
100-6 1 0 0 1 1 1 1 0
100-12 0 0 0 0 1 1 1 0
500-3 1 0 1 0 1 1 1 1
500-6 1 0 0 0 1 1 1 0
500-12 0 0 0 0 1 1 1 0
1000-3 1 0 0 1 1 0 1 0
1000-6 1 0 1 0 1 0 1 0
1000-12 0 0 0 0 1 0 1 0

(c) HDFS-12754. Commit decf8a6 introduces the issue, commit
738d1a2 solves it [23].

Config.
NodeManager DataNode

decf8a6 738d1a2 decf8a6 738d1a2
EP Blob EP Blob EP Blob EP Blob

1-3 0 0 0 0 0 0 0 0
1-6 0 0 0 0 0 0 0 0
1-12 0 0 0 0 0 0 0 0
10-3 1 0 0 0 1 1 0 0
10-6 1 0 1 0 1 1 1 0
10-12 1 0 0 0 1 1 1 0
100-3 1 0 0 0 1 1 1 0
100-6 1 0 0 0 1 1 1 0
100-12 0 0 0 0 1 1 1 0
500-3 1 0 1 0 1 1 1 1
500-6 1 0 0 0 1 1 1 0
500-12 1 0 0 0 1 1 1 0
1000-3 1 0 1 0 1 0 1 0
1000-6 1 0 1 0 1 0 1 0
1000-12 1 0 0 0 1 0 1 0

instances in the DataNode rarely change (i.e., only for 1-
3 and 10-3), whereas Blob instances are reduced in eight
configurations (e.g., 10-3 and 10-6). Similarly to the previous
issue, the DataNode component shows more variations for
Blob instances than for EP instances. Summing up all the
analyzed configurations there are 13 EP instances and 9 Blob
instances for the code commit inducing the issue (528b809),
against 11 EP instances and 1 Blob instance for the code
commit fixing the issue (ff8378e).

Table 11(c) presents the results for the HDFS-12754 issue,
and also here the number of antipattern instances is equal
or lower when considering the commit fixing the issue, i.e.,
738d1a2. Differently from previous cases, if EP instances are
not detected then Blob instances do not arise in the Node-
Manager component. Overall, 11 and 4 EP instances across
all configurations are observed for decf8a6 and 738d1a2,
respectively. For the DataNode component, we get 1 Blob
instance and 11 EP instances in the commit solving the issue,
whereas in the commit inducing the issue we found 12 EP
instances and 9 Blob instances. Summarizing, JPAD detects
the variation across different commits when calculating the

total number of detected antipattern instances. Overall, we
can notice that detected instances significantly decreases
when comparing code commits which induce and fix issues.
Besides, software components impact on such influence, the
NodeManager shows, on average, less EP and Blob instances
when issues are fixed. Instead, for the DataNode, only Blob
instances are observed to reduce after fixing the issue, the
number of EP instances slightly varies. This is due to the
nature of the analyzed issues, in fact both YARN-7102 and
HDFS-12754 are indicated in [23] as complicated perfor-
mance issues (like deadlock), and EP captures that there
is a large number of blocked threads (i.e., a symptom of
a deadlock) leading to long execution time (see Table 1).

Table 12 reports the performance antipattern instances
that are found in Cassandra across two different code com-
mits. JPAD takes 1 second on average to analyze these
configurations, and it detects CTH, WCS, Blob, and EDA
antipatterns, other antipatterns are not reported since no
instances are detected. Between the two commits we can
notice that all detected antipatterns show some decrease
in their numbers when considering the commit fixing the
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TABLE 12: Number of detected antipatterns using JPAD
in two commits of Cassandra. Commit 88d2ac4 introduces
the CASSANDRA-13794 issue, commit f93e6e3 solves it [23].
JPAD takes 1 second on average for the detection of antipat-
terns in these configurations.

Config. 88d2ac4 f93e6e3
CTH WCS Blob EDA CTH WCS Blob EDA

1-3 0 0 0 0 0 0 0 0
1-6 0 0 0 0 0 0 0 0
1-12 0 0 0 0 0 0 0 0
10-3 1 0 2 0 1 0 2 0
10-6 1 0 2 0 1 0 2 0
10-12 1 0 2 0 1 0 2 0
100-3 2 1 3 2 2 1 3 1
100-6 2 1 4 2 2 1 3 1
100-12 2 1 5 2 2 1 4 2
500-3 2 1 3 1 2 1 3 1
500-6 3 1 5 2 2 1 3 1
500-12 3 1 4 2 2 1 3 1
1000-3 3 2 4 2 2 1 3 1
1000-6 3 1 4 2 2 1 4 1
1000-12 3 1 4 2 2 1 4 2

TABLE 13: Detection capability of JPAD and state-of-the-art
tools w.r.t. Hadoop and Cassandra real-life performance is-
sues. Selected issues, systems commits, and detection results
of PerfJIT and Perphecy are extracted from [23].

Issue fixing Issue inducing PADprof PerfJIT Perphecy JPADcommit commit [53] [23] [45]

308d63f e914220 NO NO NO YES
7af5d6b NO NO NO YES

ff8378e 528b809 NO NO YES YES
738d1a2 decf8a6 NO NO YES YES
f93e6e3 88d2ac4 NO NO YES YES

issue, i.e., f93e6e3. Blob is the antipattern showing a larger
number of instances, in fact commit 88d2ac4 shows 42
instances summing up all configurations, whereas commit
f93e6e3 includes 36 instances. About WCS, we can notice
that there is one configuration only (i.e., 1000-3) showing
a decrease of antipattern instances, no major variation is
observed for this specific antipattern. Both CTH and EDA
show a considerable variation; looking at the total number
of detected instances across all analyzed configurations of
88d2ac4 and f93e6e3 commits, we get 29 and 21 (17 and 11)
CTH (EDA) instances, respectively. Hence, JPAD effectively
detects a remarkable difference across the analyzed code
commits (inducing and fixing real-life performance issues).

To answer RQ2, Table 13 summarizes results of com-
paring JPAD with state-of-the-art approaches. The last four
columns of this table indicate if the specified tool can detect
the considered performance issue. The column named PAD-
prof refers to the framework presented in [53] which we test
providing problematic snapshots (i.e., commits inducing the
issue) and comparison snapshots (i.e., commits fixing the
issue). All the analyzed snapshots show that no antipatterns
are detected. Results for PerfJIT [23] and Perphecy [45] are
instead extracted from [23] when investigating the detection
of real-life performance issues.

RQ2: comparison with state-of-the-art

JPAD overcomes state-of-the-art approaches [23], [45],
[53] in the detection of some real-life performance
issues. The proposed detection rules effectively capture
complex performance problems that are not recognized
by available tools. This consolidates the adoption of our
framework as an alternative approach to support soft-
ware engineers in understanding performance issues in
Java applications.

4.4.3 Implication of applying antipattern-based refactorings
To answer RQ3, we refactor OpenMRS (i.e., the largest ap-
plication among those considered in Table 4) to understand
if the detection information provided by JPAD can support
software engineers in solving performance issues. The se-
lection of OpenMRS as target system for investigating the
refactoring is also motivated by a recent paper [46] that ana-
lyzes the same system to locate performance regression root
causes. Specifically, we focus on the OwaFilter method
that JPAD detects as a Blob-Controller instance. Such a
method is responsible for filtering the requests directed to
protected endpoints, i.e., access is granted for authenticated
requests only. Due to the modular nature of the application,
requests come from different modules and the filter must
check the URL of all incoming requests before granting
access to authenticated users and forward their requests.

Listing 1 reports a code excerpt of the OwaFilter. We
can notice that there are several requests to be managed, for
example:

• getRequestURL() (see line 9),
• getServletPath() (see line 12),
• getAdmnistrationService() (see line 14)

to mention a few. There is indeed a match with the textual
description of the antipattern (see Table 1) indicating that
the Blob-controller occurs in case of a single class perform-
ing all the work of an application.

As specified in the literature [26], when solving a Blob-
Controller antipattern, the refactoring consists of moving
computation from the affected instance to a different one.
We delegate the verification of URLs to a centralized au-
thentication system that forwards requests to the correct
endpoint after the authentication process is completed. This
way, the OwaFilter method must only check that users
are authenticated. After refactoring OpenMRS, we evaluate
its performance under all loads and compare the obtained
results with those observed from the original OpenMRS
version. To quantify performance improvements, we con-
sider these metrics of interest: (i) the number of detected
software performance antipatterns, (ii) the CPU utilization,
and (iii) the system response time. It is worth remarking
that our focus is on showing empirical evidence on the
benefit of solving antipatterns, i.e., possible performance im-
provements that can be derived by detecting and removing
antipatterns, and this is why we do not investigate further
refactoring types or solutions.

Table 14 reports the antipattern instances detected for
the refactored system. Overall, compared to the original
system, the number of instances mostly decreases, see the
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1 public void doFilter(final ServletRequest req, final ServletResponse res, final FilterChain chain) throws IOException,
ServletException {

2 final HttpServletRequest request = (HttpServletRequest)req;
3 String owaBasePath = Context.getAdministrationService().getGlobalProperty("owa.appBaseUrl", "/owa");
4 if (StringUtils.isBlank((CharSequence)owaBasePath)) {
5 owaBasePath = "/owa";
6 }
7 String requestURL = null;
8 if (isFullBasePath(owaBasePath)) {
9 requestURL = request.getRequestURL().toString();

10 }
11 else {
12 requestURL = request.getServletPath();
13 }
14 final String loginUrl = Context.getAdministrationService().getGlobalProperty("login.url", "login.htm");
15

16 ...
17 }
18 }

Listing 1: Code excerpt of the OwaFilter method detected by JPAD as Blob-Controller antipattern instance.

TABLE 14: Number of detected instances in OpenMRS after applying antipattern-based refactoring. ToB and EST are
omitted since no instances have been detected.

Config. CTH EP WCS Blob EDA
Refact. Diff. Refact. Diff. Refact. Diff. Refact. Diff. Refact. Diff.

25-3 0 -2 2 -1 0 -2 3 +1 1 -1
25-6 0 0 1 +1 0 0 1 0 0 -1
25-12 0 0 1 +1 0 -1 1 0 1 0
50-3 0 0 1 0 0 0 1 0 0 0
50-6 0 0 1 0 0 0 1 0 0 0
50-12 0 0 1 0 0 0 1 0 0 0
75-3 0 -1 1 -1 0 -1 1 -2 0 -1
75-6 0 -1 2 0 0 -1 3 0 1 0
75-12 0 0 1 0 0 0 1 0 0 0
100-3 1 +1 2 0 1 +1 2 -1 1 0
100-6 0 0 1 0 0 0 1 0 0 0
100-12 0 0 1 0 0 0 1 0 0 0

TABLE 15: Performance variation (%) obtained by applying the antipattern-based refactoring to OpenMRS.

Utilization Response Time
Config. Original [%] Refactored [%] Variation [%] Original [s] Refactored [s] Variation [%]
25-3 27.89 15.00 46.22 3.913 4.874 -24.56
25-6 23.03 12.38 46.24 8.706 8.075 7.25
25-12 20.38 10.75 47.25 18.295 17.299 5.45
50-3 55.37 53.54 3.31 5.919 4.111 30.55
50-6 57.22 52.77 7.78 13.743 9.042 34.20
50-12 56.23 51.26 8.84 30.180 21.446 28.94
75-3 63.29 62.36 1.47 5.545 3.138 43.42
75-6 66.84 60.30 9.78 14.839 7.350 50.47
75-12 66.96 56.80 15.17 32.977 17.902 45.71
100-3 55.92 47.21 15.58 3.262 3.038 6.88
100-6 57.37 49.23 14.19 11.546 6.747 41.57
100-12 57.49 51.20 10.94 28.883 24.292 15.89

Diff. column where negative numbers indicates that the
number of instances is decreased after the refactoring. For
example, with 75 clients and 3 minutes of load tests running,
JPAD detects 1 CTH, 2 EP, 1 WCS, 3 Blob, and 1 EDA
instances in the OpenMRS original system. When applying
the antipattern-based refactoring, we remove 1 instance of
CTH, EP, WCS, and EDA, and 2 Blob instances. A similar
improvement (see -2 entries in Table 14) is observed for
CTH and WCS when there are 25 clients and the load
test runs for 3 minutes. However, it is worth noting that
some configurations (i.e., 25-6, 25-12, and 100-3) show more
antipattern instances in the refactored system. For instance,
for the configuration 25-3, the number of Blob instances
increases in the refactored case. After further investigation,

we find that interestingly this is due to the introduction of a
Blob-DataContainer instance while solving the Blob-Controller
antipattern. However, this is the only case for which Blob
instances increase. Generally, the number of Blob instances
is constant and decreases with 75 or 100 clients and 3
minutes of load tests running. The increment of antipattern
instances (see +1 entries in Table 14) is observed for EP in
two configurations and for CTH, WCS, and Blob in only
one configuration. The number of EDA instances does not
increase in any of the considered configurations.

The impact of the antipattern-based refactoring is also
observed on performance indices of interest, i.e., CPU uti-
lization and system response time of the OpenMRS Java
application, results are shown in Table 15. The two perfor-
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mance indices are reported for both the original and the
refactored OpenMRS system. The Variation column shows
the observed performance change and is computed as:
Variation = [ (Original - Refactored) / Original ] · 100. When
Variation > 0, the considered index is smaller for the
refactored system than for the original one, meaning that
the system performance has improved. Table 15 highlights
with bold entries all those for which Variation is larger
than 10%. The relevance of antipattern-based refactoring
is shown by the general enhancement of the OpenMRS
application performance (up to 50.47%, observed for the
system response time). The configuration with 25 clients
and 3 minutes of load tests running is the only exception
to this observation. In this case, the response time of the
refactored system is 25% longer than the one of the original
system even if the CPU utilization is lower for the refactored
system. This may be due to performance issues that are
generated in different (and previously not critical) parts of
the system. We already observed that the 25-3 configuration
introduces a Blob-DataContainer instance, when solving the
Blob-Controller antipattern. This might be the reason for the
longer response time. As future work, we plan to further
investigate the solution of antipatterns and possible impli-
cations in generating new instances.

RQ3: antipattern-based refactoring

Antipattern-based refactoring does not guarantee in
advance neither a reduction of the total number of
detected instances nor an improvement in the system
performance. However, our experimentation shows
that usually less antipattern instances are detected, and
most performance indicators of interest improve. By
refactoring OpenMRS, we find empirical evidence on
the benefit of solving one antipattern: 12 less antipat-
tern instances are detected; on average (across all the
analyzed configurations), the CPU utilization is 18.90%
lower and the system response time is 23.81% shorter.
Maximum improvements for CPU utilization and sys-
tem response time are 47.25% and 50.47%, respectively.

5 THREATS TO VALIDITY

Besides inheriting all the limitations related to the perfor-
mance evaluation of Java-based applications [2], our ap-
proach exhibits the following main (construct, conclusion,
internal, and external) threats to validity [75].

Construct threats. This type of threat is observed when
metrics deviate from the focus of the investigation. To
smooth it, we provide a quantitative evaluation of the
approach motivated by the research questions. We show that
(i) detection rules work on real-world case studies, (ii) real-
life performance issues are captured, and (iii) solving one
antipattern instance improves the system performance.

Conclusion threats. A threat of this type is related to the
reliability of collected measures. To smooth these threats,
we run all experiments on the same machine. Moreover, the
profiling of the Java applications under analysis is delegated
to the YourKit Java Profiler, a well-assessed and widely-used
tool for this scope [76].

Internal threats. We thoroughly test JPAD to spot errors in
its implementation. For each experiment (whose setup can
be easily changed by users), when an antipattern instance is
detected, we verify if thresholds are violated. We recall that
JPAD is publicly available [28] for inspection and to replicate
experiments of this paper.

External threats. We are aware that findings from our
experiments may not transfer to different Java applications.
To increase the external validity, we select software systems
from different domains whose class number ranges from 68
to more than 1k. We also inspect code commits related to
four real-life performance issues that are considered rather
complex to be predicted by state-of-the-art approaches [23].
This way, we evaluate our approach against diverse applica-
tions so that our results may generalize to other case studies.

6 DISCUSSION

In this section, we discuss limitations of our approach that
we consider as open issues paving the way for future
research investigations.

Soundness and completeness. Our approach currently de-
tects seven software performance antipatterns experimented
on five Java applications belonging to different domains,
and nine specific commits of two further subject systems
used in prior research to extract performance data [77]. Even
if we demonstrate that our approach is able to recognize
some performance issues that are not detected by other ap-
proaches in the literature (see Table 13), soundness and com-
pleteness are not guaranteed. To partially address this issue,
a preliminary investigation is conducted experimenting (i)
a set of four commits known to fix performance issues (see
Tables 11–12) and (ii) an antipattern-based refactoring along
with the consequent performance variation on utilization
and response time indices (see Table 15). As future work we
plan to strengthen this investigation involving practitioners
in the evaluation of JPAD.

Antipattern specification. Detection algorithms reflect our
interpretation of the textual description of software per-
formance antipatterns provided in [26]. We are aware that
further interpretations can be provided by different stake-
holders (e.g., practitioners), and we leave as part of our
future work the possibility of customizing detection rules
and to provide a flexible framework that reflects multiple
interpretations. More in general, we plan to introduce a
domain-specific language for software performance antipat-
terns as support for users that may define their own detec-
tion rules. This way, we aim to strengthen the specification
of antipatterns and to collect the experience of different
stakeholders, possibly even discovering new antipatterns.

Profiling overhead. The performance monitoring of Java
applications is known to generate overhead [54], a com-
parison of different profiling tools and their overhead is
presented in [78], [79]. In this paper, we use YourKit since
both academia [53], [57] and industrial partners, such as
Apple and Google, employ it as support for evaluating the
performance of industrial and real-world applications. To
partially cope with the overhead introduced by YourKit,
all our detection algorithms include at least one thresh-
old derived from offsets and average values. Offsets are
independent of the absolute value of considered metrics,
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and they allow specifying thresholds based on values that
already include the profiling overhead. This way, JPAD
compares performance metrics and thresholds that are both
affected by the profiling overhead. We leave as future work
the investigation on the usage of other monitoring tools to
compare (and possibly smooth) the profiling overhead.

Antipattern thresholds. As argued in [80], thresholds must
be set in software performance antipatterns to express per-
formance requirements (when available), or to establish
boundaries which represent the perception of different sys-
tem stakeholders. In fact, users can differently judge the
importance of performance requirements, e.g., the hardware
utilization may be associated to monetary costs and more
relevant for system administrators, whereas the execution
time of a service is taken into account mainly by soft-
ware developers. Therefore, JPAD provides the possibility
to specify such thresholds, and this task is intentionally
transferred to users that can decide which numerical values
are more suitable for their purposes. We leave as future
work the possibility of exploring further strategies, possibly
synthesizing the need of different stakeholders.

Software performance testing. Test cases are often very im-
portant for an effective dynamic analysis [81]. Our approach
delegates the test design to software engineers that may
focus on general requirements and miss the relevant ones
(from a performance-based perspective). Our experimenta-
tion highlights the importance of designing test suites (see
Table 11), and demonstrates that such a selection can be
guided by a preliminary analysis of the CPU utilization of
software components. However, as future work we plan
to investigate if approaches in the literature dealing with
an efficient design of performance tests [82], [83] can be
integrated in JPAD.

Antipattern-based refactorings. This is a very complex ac-
tivity, and it is not guaranteed that the number of detected
antipatterns decreases or the system performance improves.
Our experimentation shows that solving one antipattern
may generate other antipattern instances; more in general,
antipattern instances can increase and the system response
time can worsen (see Tables 14–15). Besides, the complexity
is exacerbated by the possibly large number of detected
antipattern instances, each matching with multiple code
refactorings, and it is very difficult to understand which
changes should be prioritized. In our previous work [33]
we proposed a ranking methodology for the evaluation of
architectural alternatives. We leave as part of future work to
experiment ranking strategies on code refactorings thus to
better investigate this aspect. Large systems may show the
additional difficulty of being more sensitive to the impact of
code changes, probably due to dependencies (among com-
ponents) that need to be propagated when implementing
refactorings. Antipattern-based solutions might be enriched
with information about their effect (e.g., the involvement of
dependent components) to identify which subsystems are
involved in the refactoring process and may trigger new
antipatterns. To automatically fix the detected antipatterns,
it is necessary that code refactorings undergo a verification
process that guarantees their functional correctness.

Guidelines for developers. When adopting JPAD in prac-
tice, we encourage developers to consider two different
dimensions on the results they get as output. First, one can

determine that a hotspot method shows performance issues
if it is reported as a violation of some antipatterns. Second,
when considering the different system configurations, the
presence of the very same hotspot method (across many
system configurations) contributes to the decision that such
a method is indeed relevant for the performance issues
under analysis. Both these two cases may indicate that
such a hotspot method includes several design flaws and
it indeed contributes to poor system performance.

7 CONCLUSION AND FUTURE WORK

In this paper we present JPAD, a tool-based approach to
automatically detect software performance antipatterns in
Java applications. The experimentation is performed on
real-world Java applications from different domains, and
JPAD captures four real-life performance issues that are not
predicted by state-of-art approaches [23], [45], [53]. Results
show the efficiency and accuracy of the proposed approach.
The antipattern detection is executed on 300 configurations
and we exploit such extensive experimentation to build a
ground truth, thus to quantify JPAD accuracy. Overall, the
accuracy is larger than 95% and the F1 score, derived from
precision and recall metrics, is larger than 85% in the consid-
ered cases, leading to assess accurate detection rules. About
efficiency, system configurations are analyzed, on average,
in less than a minute, some configurations require more time
and JPAD always takes less than 5 minutes to complete the
detection of antipatterns. Besides, the number of detected
antipattern instances substantially vary when experiment-
ing software code commits known to induce and fix real-life
performance issues. Antipattern-based refactoring turns out
to be beneficial, the system performance improves up to 47%
and 50% when measuring two specific metrics of interest,
i.e., CPU utilization and system response time, respectively.
JPAD points out system characteristics (e.g., number of
times a method is invoked) that lead to performance issues,
and its report includes quantitative information. This way,
we aim to support software engineers in the task of taking
decisions on which methods require more attention than
others from a performance-based perspective.

Several research directions have been identified for fu-
ture research. First, we want to extend the specification of
antipatterns and make them flexible, i.e., users can add and
modify detection rules to provide their own interpretation
of antipatterns, possibly by introducing a domain-specific
language. Second, we plan to extend the set of analyzed
systems, possibly including case studies from the industrial
domain to further assess both efficiency and accuracy. Third,
we plan to extend JPAD to point out possible directions
for antipattern-based refactorings, but the actual implemen-
tation of code fixings is delegated to software engineers
who can assure the preservation of the business logic of
applications. Moreover, the solution process is complex due
to the number of detected antipatterns that may be large, as
demonstrated in this paper, and it is difficult to select which
antipattern to solve first. Hence, we want to investigate con-
current (or prioritized) resolution of multiple antipatterns,
this may lead to inconsistencies due to conflicting solutions
for which ad-hoc methodologies need to be defined.
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APPENDIX A
ANTIPATTERN DETECTION ALGORITHMS

This appendix provides the detection algorithms and imple-
mentation details of the following seven performance an-
tipatterns: 1) Circuitous Treasure Hunt (CTH), 2) Extensive
Processing (EP), 3) Wrong Cache Strategy (WCS), 4) Blob, 5)
Tower of Babel (ToB), 6) Empty Semi Trucks (EST), and 7)
Excessive Dynamic Allocation (EDA).

In the following we argue on the matching between
the textual description of antipatterns (see Table 1) and the
proposed detection rules, thus to discuss the soundness of
algorithms in checking sufficient information on the basis of
our interpretation.

Algorithm 1 shows the detection algorithm for the Cir-
cuitous Treasure Hunt (CTH) antipattern. Three input pa-
rameters are provided to the algorithm, i.e., countOffset,
cpuTh, and option. The algorithm first computes the
averageCpuUsage and checks if it exceeds the threshold
cpuTh. This condition matches with verifying if “perfor-
mance will suffer” (see Table 1). In that case, depending
on the option parameter, it computes the minimum, max-
imum, or average number of calls in each hotspot method
(identified as suspicious in the previous condition). For each
hotspot, the algorithm checks if the number of method
calls is larger than the thresholds obtained by combining
countOffset with the average number of calls previously
computed. This rule is introduced to check if “an object
must look in several places to find the information it needs”
(see Table 1). If this condition is verified, then the hotspot is
detected as a CTH instance. As output of the detection, we
also report the average CPU usage and the number of calls
produced by the identified hotspot method.

Algorithm 1 CTH detection.
1: function DETECTCTH(countOffset, cpuTh, option)
2: avgCpuUsage← GETAVGCPUUSAGE( )
3: if avgCpuUsage > cpuTh then
4: methodCountMap← GETMETHODCOUNTMAP(option)
5: avgCount← GETAVGMETHODCOUNT(methodCountMap)
6: avgTimeHotspot← GETAVGTIME(hotspotMethods)
7: for all hotspotMethods do
8: if hotspot.time > avgTimeHotspots then
9: hsMethodCount← methodCountMap.get(hotspot)

10: countTh← avgCount · (1 + countOffset)
11: if hsMethodCount > countTh then
12: REPORTCTH(avgCpuUsage, hsMethodCount)
13: end if
14: end if
15: end for
16: end if
17: end function

Algorithm 2 shows the detection algorithm for the Exten-
sive Processing (EP) antipattern. The execution time offset
(i.e., execTimeOffset) is the only input parameter of the
algorithm and it is a percentage value used with the average
execution time of all methods (i.e., avgExecTime) to de-
fine the threshold execTimeTh. The algorithm first checks
whether the blocked threads are more than a half of the
total threads. This rule is introduced to check if “extensive
processing monopolizes the processors” (see Table 1). If
this condition is verified, it computes avgExecTime as the
average method execution time normalized over the total
execution time. The algorithm checks whether the execution

time of hotspots is longer than execTimeTh and reports the
EP antipattern when this condition holds. The condition on
execution time matches with verifying whether “extensive
processing impedes the overall response time” (see Table 1).

Algorithm 2 EP detection.
1: function DETECTEP(execTimeOffset)
2: allThreadsCount← COUNTTHREADS( )
3: blockedThreadsCount← COUNTBLOCKEDTHREADS( )
4: if blockedThreadsCount > allThreadsCount/2 then
5: totExecTime← GETTOTEXECTIME( )
6: avgExecTime← (GETAVGEXECTIME( )/totExecTime) · 100
7: for all hotspotMethods do
8: hsExecTime← (GETHSEXECTIME( )/totExecTime) · 100
9: execTimeTh← avgExecTime + execTimeOffset

10: if hsExecTime > execTimeTh then
11: REPORTEP(hsExecTime)
12: end if
13: end for
14: end if
15: end function

Algorithm 3 reports the detection rules for the
Wrong Cache Strategy (WCS) antipattern. It takes
memUsageOffset as an input parameter, i.e., a percentage
value used with the average memory usage of all methods
to derive the threshold memUsageTh. This algorithm checks
whether the memory usage of each hotspot exceeds both
the CPU usage of the same method and the threshold
memUsageTh. These two conditions verify when “caching
too many objects (or objects that are rarely used) quickly
changes the advantage of caching into a disadvantage due
to higher memory usage” (see Table 1). If both conditions
are verified, the hotspot is detected as a WCS instance.

Algorithm 3 WCS detection.
1: function DETECTWCS(memUsageOffset)
2: avgMemUsage← GETAVGMEMUSAGE(hotspotMethods)
3: memUsageTh← avgMemUsage · (1 + memUsageOffset)
4: for all hotspotMethods do
5: hsMemUsage← GETHSMEMUSAGE( )
6: hsCpuUsage← GETHSCPUUSAGE( )
7: if hsMemUsage > MAX(hsCpuUsage,memUsageTh) then
8: REPORTWCS(hsMemUsage)
9: end if

10: end for
11: end function

Algorithm 4 shows the detection rules for the Blob an-
tipattern. Three input parameters are required: msgOffset
(i.e., a percentage value used to define the caller and callee
thresholds, namely callersTh and calleesTh), cpuTh,
and memTh (i.e., two thresholds on the CPU and memory
usage). First, the algorithm finds the resource (CPU or
memory) with the largest average utilization and checks
if such a usage exceeds the corresponding threshold (i.e.,
cpuTh for CPU usage and memTh for the memory). This rule
is introduced to check if there is a situation that “degrades
the performance” (see Table 1). If this condition holds, the
algorithm computes callersTh and calleesTh using the
defined offset (i.e., msgOffset) and the average number
of callers (i.e., the number of methods that are invoked by
each method) and callees (i.e., the number of times that
each method is called). A hotspot method is reported as an
instance of the Blob antipattern (more specifically as Blob-
Controller) if its number of callees exceeds calleesTh. If
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Algorithm 4 Blob detection.
1: function DETECTBLOB(msgOffset, cpuTh, memTh)
2: avgCpuUsage← GETAVGCPUUSAGE( )
3: avgMemUsage← GETAVGMEMUSAGE( )
4: checkHwUtil← false
5: if avgCpuUsage ≥ avgMemUsage then
6: checkHwUtil← avgCpuUsage > cpuTh
7: else
8: checkHwUtil← avgMemUsage > memTh
9: end if

10: if checkHwUtil then
11: callersMap← GETCALLERSMAP( )
12: calleesMap← GETCALLEESMAP( )
13: avgCallers← GETAVG(callersMap)
14: avgCallees← GETAVG(calleesMap)
15: calleesTh← avgCallees · (1 + msgOffset)
16: callersTh← avgCallers · (1 + msgOffset)
17: for all hotspotMethods do
18: hsCallers← callersMap.get(hotspot)
19: hsCallees← calleesMap.get(hotspot)
20: if hsCallees > calleesTh then
21: REPORTBLOB("Controller")
22: end if
23: if hsCallers > callersTh then
24: REPORTBLOB("Data Container")
25: end if
26: end for
27: end if
28: end function

a hotspot method shows a number of callers that exceeds
callersTh, then it is reported as Blob-DataContainer an-
tipattern. This distinction is due to the verification of the
following condition: “a single class either (i) performs all the
work of an application or (ii) holds all the application data.
Either manifestation results in excessive message traffic”
(see Table 1).

Algorithm 5 ToB detection.
1: function DETECTTOB(execTimeOffset)
2: methodCallsMap← GETMETHODCALLSMAP( )
3: avgCalls← GETAVG( methodCallsMap )
4: totExecTime← GETTOTEXECTIME( )
5: avgExecTime← (GETAVGEXECTIME( )/totExecTime) · 100
6: execTimeTh← avgExecTime + execTimeOffset
7: for all hotspotMethods do
8: if hotspot contains "parse"
9: or hotspot contains "convert"

10: or hotspot contains "translate"
11: then
12: hsCalls← methodCallsMap.get(hotspot)
13: if hsCalls > avgCalls then
14: hsExecTime← (GETHSEXECTIME( )/totExecTime) ·100
15: if hsExecTime > execTimeTh then
16: REPORTTOB( )
17: end if
18: end if
19: end if
20: end for
21: end function

Algorithm 5 shows the detection rules for the Tower of
Babel (ToB) antipattern. It takes as input execTimeOffset
(already defined for EP detection, see Algorithm 2). This
algorithm iterates over each hotspot and checks whether (i)
the method name contains one of the keywords reported in
the definition of the antipattern (i.e., parse, convert, translate,
as defined in [26]), (ii) if the hotspot method is invoked more
than other methods, and (iii) if the hotspot execution time
exceeds execTimeTh. These rules are introduced to check if

“processes excessively convert, parse, and translate internal
data into a common exchange format” (see Table 1). If all
these conditions are verified, the hotspot method is reported
as an instance of the ToB antipattern.

Algorithm 6 reports the detection rules for the Empty
Semi Trucks (EST) antipattern. One input parameter is re-
quired, i.e., msgOffset. It is a percentage value used to
define the callee threshold, namely calleesTh. To compute
this threshold, we compute the average number of times
that hotspots invoke their callees. For all callees, we count
how many times each callee has been invoked, and we
compare such count with the threshold value. This rule is
aimed to check when “an excessive number of requests is
required to perform a task” (see Table 1). If it is larger than
the threshold, we check the coefficient of variation of the
callee’s service time. This condition is introduced to verify if
“it may be due to inefficient use of available bandwidth, an
inefficient interface, or both” (see Table 1). In case no large
variation (i.e., lower than 0.1 since it can be approximated as
a deterministic distribution [84]) is detected, then the callee
is reported as an instance of the EST antipattern.

Algorithm 6 EST detection.

1: function DETECTEST(msgOffset)
2: calleesMap← GETCALLEESMAP( )
3: for all hotspotMethods do
4: hsCallees← calleesMap.get(hotspot)
5: avgCallees← GETAVG(hsCallees)
6: calleesTh← avgCallees · (1 + msgOffset)
7: for all hsCallees do
8: numCalls← COUNTCALLS(callee)
9: if numCalls > calleesTh then

10: coeffVariationTime← GETCVTIME(callee)
11: if coeffVariationTime < 0.1 then
12: REPORTEST(callee)
13: end if
14: end if
15: end for
16: end for
17: end function

Algorithm 7 EDA detection.

1: function DETECTEDA(memTh, gcObjectsOffset)
2: avgMemUsage← GETAVGMEMUSAGE( )
3: if avgMemUsage > memTh then
4: avgGcObjs← GETGCOBJS(hotspotMethods)
5: numObjsTh← avgGcObjs · (1 + gcObjectsOffset)
6: for all hotspotMethods do
7: hsGcObjs← GETHSGCOBJS( )
8: if hsGcObjs > numObjsTh then
9: REPORTEDA(hsGcObjs)

10: end if
11: end for
12: end if
13: end function

Algorithm 7 describes the detection rules of the Exces-
sive Dynamic Allocation (EDA) antipattern. It takes as input
two parameters, i.e., memTh and gcObjectsOffset, that
refer to the thresholds on the memory usage and on the
number of objects in the garbage collector. First, we verify
the utilization of the memory to capture that “the overhead
has a negative impact on performance” (see Table 1). The
choice of checking memory instead of CPU utilization is
motivated by the nature of the antipattern since the cre-
ation and destruction of objects is known to impact on the
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TABLE 16: Software Performance Antipatterns - key properties extracted from natural language specification [26].

Name Problem specification Key properties

Concurrent
Processing
Systems

Occurs when processing cannot make use of available processors
because of (i) a non-balanced assignment of tasks to processors or
(ii) single-threaded code.

Unbalanced utilization of hardware platforms.

“Pipe and Fil-
ter” Architec-
tures

Occurs when the slowest filter in a “pipe and filter” architecture
causes the system to have unacceptable throughput.

Software bottleneck, low system throughput.

One-Lane
Bridge

Occurs at a point in execution where only one, or a few, processes
may continue to execute concurrently. Other processes are delayed
while they wait for their turn.

Concurrency not guaranteed due to resources showing
different levels of parallelism.

Falling
Dominoes

Occurs when one failure causes performance failures in other com-
ponents.

Large number of failures and their propagation, it
refers more to reliability than performance.

Traffic Jam Occurs when one problem causes a backlog of jobs that produces
wide variability in response time which persists long after the
problem has disappeared.

Evolution of system response time.

The Ramp Occurs when processing time increases as the system is used. Evolution of response time in system services.

More is Less Occurs when a system spends more time thrashing than accom-
plishing real work because there are too many processes relative to
available resources.

Evolution of frequent thrashing events.

memory allocation [85]. Then, we get the average number
of garbage collected objects in the hotspot methods, and we
check whether the number of unused objects of each hotspot
is larger than the threshold. If this holds, then we report such
hotspot and the value of objects in the garbage collector.
This condition is introduced to check “when an application
unnecessarily creates and destroys large numbers of objects
during its execution” (see Table 1).

APPENDIX B
RATIONALE FOR NOT IMPLEMENTING SOME AN-
TIPATTERNS

Table 16 lists all the software performance antipatterns that
cannot be implemented. The first column shows the name
of the antipattern, the second column describes the problem
expressed in natural language, the third column reports the
extracted key properties that represent the required informa-
tion for the antipattern detection. In the following we argue
on the lack of data from profiling, hence the implementation
of these antipatterns is unfeasible.

Concurrent Processing Systems (CPS) occurs when pro-
cessing cannot make effective use of available processors
either because of (i) a non-balanced assignment of tasks to
processors or because of (ii) single-threaded code. We do not
implement this antipattern since its specification includes
causes that cannot be derived by profiling data, in fact both
the deployment of software components and the number of
threads lack as types of information. Note that profiling data
includes the number of running threads, not the number
of static threads defined in the code itself. This is why
we cannot match the presence of a single running thread
with the specification of the antipattern referring to single-
threaded code. The impact on the system performance con-
sists of checking the utilization of cpu/memory resources
that instead is available, however we think this information
is not sufficient to match its textual description.

“Pipe and Filter” Architectures (P&F) occurs when the sys-
tem throughput is determined by the slowest filter. It means

that there is a stage in a pipeline which is significantly
slower than all other stages. We do not implement this
antipattern because information on the system architecture
is not available in profiling data, hence the recognition of a
pipeline is not feasible.

One-Lane Bridge (OLB) occurs in concurrent systems
when mechanisms of mutual access to a shared resource
are badly designed. We do not implement this antipattern
since synchronization and locks (i.e., mechanisms to regu-
late concurrency) lack in profiling data.

Falling Dominoes antipattern occurs when failures prop-
agates through components. It is not implemented since it
refers to reliability and fault tolerance issues that are out of
the scope of this paper.

Traffic Jam (TJ), The Ramp (TR), and More is Less (MiL) are
classified in the literature [80] as multiple-values antipat-
terns, since their detection relies on observing the trend (or
evolution) of performance indices along the time. However,
at the current stage, the detection of antipatterns is focused
on the analysis of single snapshots. In fact, YourKit provides
aggregated data, it does not report the continuous evolution
of performance indices, but only their overall computation
(e.g., method execution time). Moreover, the performance
overhead caused by thrashing events (e.g., too many web/-
database connections) cannot be recognized on the basis of
aggregated data.

APPENDIX C
SENSITIVITY ANALYSIS ON ANTIPATTERNS’
THRESHOLD AND OFFSET VALUES

Here we report our investigation about how thresholds and
offsets setup inputs affect the detection. Specifically, we vary
threshold and offset numerical valuesf and study their effect
on the number of detected instances.

Figure 3 depicts variations found on the number of de-
tected CTH instances (fixing #clients = 25, and duration = 3
minutes) when experimenting different values of the input
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Fig. 3: Number of detected CTH instances (with #clients = 25, duration = 3 minutes).
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Fig. 4: Number of detected EP instances varying execTimeOffset threshold.

parameters (i.e., countOffset, cpuTh, and option, see Algo-
rithm 1) included in the specification of the corresponding
antipattern. Figure 3(a) shows that the largest variation is
observed for the TeaStore system, whose number of CTH
instances varies between 6 and 0, no instances are detected
for countOffset ≥ 40%. The number of CTH instances of
OpenMRS varies between 2 and 0 that are experienced in the
extreme cases of setting countOffset to 5% and 95%, whereas
all other values lead to detect 1 instance of the antipattern.
TeaStore shows the largest variation also in Figure 3(b) where
there are 6 CTH instances for cpuTh ≤ 45%, 0 otherwise.
Figure 3(c) shows that setting the option parameter to average
or max allows detecting the same number of CTH instances
for all systems, whereas the min option reduces the number
of detected CTH instances for WebGoat (i.e., 3 instances with
average and max, 2 with min) and TeaStore (i.e., 6 instances
with average and max, 5 with min).

Figure 4 reports the variation on the number of EP
instances. This antipattern includes one offset value only,
i.e., execTimeOs. We evaluate two configurations, specifically
Figure 4(a) shows #clients = 25 and duration = 3 min-
utes, whereas Figure 4(b) considers #clients = 100 and
duration = 12 minutes. In both configurations, at least 2
EP instances are detected in CloudStore when execTimeOs
≤ 45%. There are 9 instances in Teastore for execTimeOs
≤ 55% and configuration 25-3 (≤ 60% with the 100-12
configuration) that rapidly go to 0 for execTimeOs ≥ 70%
(≥ 75% with the 100-12 configuration). WebGoat experiences
a large number of EP instances that decreases to zero when

execTimeOs is ≥ 30%. OpenMRS shows a different number
of instances varying the settings. In Figure 4(a), 3 and
2 instances are detected for low values of the threshold,
whereas 1 instance only is detected with a larger number of
clients, see Figure 4(b). Similarly, the behavior of TrainTicket
is affected by the analyzed configuration. With 25 clients,
up to 6 instances are detected when execTimeOs ≤ 30%,
whereas up to 5 instances are observed with 100 clients
when execTimeOs ≤ 25%.

Figure 5 reports the variation on the number of WCS
instances. This antipattern includes one offset value only,
i.e., memUsageOs. We consider two settings, specifically Fig-
ure 5(a) shows #clients = 25 and duration = 3 minutes,
whereas Figure 5(b) considers #clients = 75 and duration =
6 minutes. In WebGoat and CloudStore, the number of WCS
instances increases with the number of clients. In TrainTicket,
1 WCS instance is detected for small memUsageOs values
independently of the number of clients. In OpenMRS, the
number of instances decreases when the number of clients
is larger and it drops to zero when threshold is greater
than 30%. No WCS instances are detected for TeaStore in the
considered configurations. For TrainTicket and OpenMRS,
we get a counter-intuitive result of obtaining less instances
in case of a larger number of clients. This confirms that
the workload is not directly matched with the number of
detected instances, other software performance antipattern
types may show up.

Figure 6 depicts the variations found on the num-
ber of detected Blob instances (fixing #clients = 25 and
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Fig. 6: Number of detected Blob instances (with #clients = 25, duration = 3 minutes).
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Fig. 7: Number of detected ToB instances varying execTimeOffset threshold.

duration = 3 minutes) when experimenting different values
of input parameters (i.e., msgOs, cpuTh, and memTh, see
Algorithm 4). Figure 6(a) shows that msgOs affects the
number of instances detected in the systems under analysis.
TrainTicket and OpenMRS are the only systems for which the
number of Blob instances is constant with any offset value,
all other systems are exposed to variations. As visible from
Figures 6(b) and 6(c), cpuTh and memTh mostly does not
affect the number of instances in the considered systems.
Few exceptions are: (i) TrainTicket since instances go from 1
to 0 when cpuTh ≥ 50%; (ii) CloudStore whose Blob instances

go from 8 to 0 when cpuTh ≥ 65%; (iii) OpenMRS since
instances go from 2 to 0 when memTh ≥ 50%.

Figure 7 reports variations on the number of ToB in-
stances. This antipattern includes one offset, i.e., execTimeOs.
We evaluate two configurations, specifically Figure 7(a)
shows #clients = 25 and duration = 3 minutes, whereas
Figure 7(b) considers #clients = 50 and duration = 3
minutes. Only WebGoat is affected by this antipattern, 3
to 4 ToB instances are detected with 25 clients when
execTimeOs < 30%, whereas such value varies between 1
and 4 with 50 clients when execTimeOs ≤ 20%.
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Fig. 9: Number of detected EDA instances (with #clients = 25, duration = 3 minutes).

Figure 8 depicts variations on the number of EST in-
stances. This antipattern includes one offset, i.e., msgOffset.
We evaluate two configurations, specifically Figure 8(a)
shows #clients = 25 and duration = 3 minutes, whereas
Figure 8(b) considers #clients = 100 and duration = 12
minutes. TrainTicket and WebGoat are the systems affected
by this threshold. TrainTicket shows 1 instance up to 40%
(in both cases of considering 25 and 100 clients), and later
drops to zero. WebGoat is instead showing 1 instance when
considering 100 clients only, and it drops to zero when the
threshold becomes larger than 80%.

Figure 9 reports variations on the number of EDA in-
stances. This antipattern includes two input parameters, i.e.,
gcObjectsOffset and memTh. Figure 9(a) shows that the largest
variation is observed for the WebGoat system, whose number
of EDA instances goes from 3 to 1 when gcObjectsOffset ≤
30% and drops to 0 for larger values. The number of EDA
instances of OpenMRS varies between 2 (experienced in the
case of setting gcObjectsOffset up to 45%) and 0 for larger
values of the offset. TeaStore shows 2 EDA instances when
gcObjectsOffset = 5%. The effect of the memTh threshold is
observed in Figure 9(b) where the OpenMRS system has
2 EDA when setting memTh ≤ 45%, and the CloudStore
system shows 2 EDA instances for memTh = 5%. TeaStore
and WebGoat show 2 and 3 EDA instances, respectively,
independently of the memTh value, i.e., this threshold does

not affect the number of antipattern instances detected in
these systems.

Summarizing, the detection process is indeed affected
by the numerical values of thresholds and offsets. Although
system characteristics affect the number of detected in-
stances and some thresholds/offsets look marginal for some
antipatterns (e.g., cpuTh and memTh for Blob), thoughtfully
choosing the value of input parameters allows JPAD to
detect a different amount of antipattern instances. This is
helpful to reflect the different perception that system stake-
holders might have on performance requirements.
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