
20/05/2013

1

Design Patterns

Catia Trubiani, Antinisca Di Marco
{catia.trubiani, antinisca.dimarco}@univaq.it

Roadmap

• Background: what’s a design pattern?

• Elements of Design patterns:

– Name, Problem, Solution, Consequences

• Catalog of design patterns:

– Creational Patterns

– Structural Patterns

– Behavioral Patterns

• Conclusion and References

20/05/2013

2

Background

• Design patterns represent solutions to problems
that arise when developing software, in fact they
refer to problem/solution pairs within a particular
context

• Describes recurring design structures by
facilitating reuse of successful software
architectures and designs

• Patterns capture the static and dynamic structure

and collaboration among key participants in
software designs

Origin of Design Patterns

“Each pattern describes a problem which occurs

over and over again in our environment and then

describes the core of the solution to that

problem, in such a way that you can use this

solution a million times over, without ever doing

it in the same way twice”

Christopher Alexander, A Pattern Language, 1977,

Context: City Planning and Building architectures

20/05/2013

3

History of Design Patterns

• 1987: Cunningham and Beck use Alexander ideas to develop a pattern
language for Smalltalk

• 1990: Gang of Four (Gamma, Helm, Johnson e Vlissides) start to create a
catalog of design patterns

• 1991: Bruce Anderson shows the first design patterns at the Conference
on Object-Oriented Programming Systems, Languages, and Applications
(OOPSLA)

• 1993: Kent Beck and Grady Booch organize the Hillside Group, i.e. the first
meeting for discussing design patterns challenges

• 1994: First Conference on Pattern Languages of Programs (PLoP)

• 1995: The Gang of Four publishes the book “Design Patterns”

Elements of Design Patterns

• Design patterns have four essential elements:

– Pattern name

– Problem

– Solution

– Consequences

20/05/2013

4

Pattern Name

• A handle used to describe:

– a design problem

– its solutions

– its consequences

• Increases design vocabulary

• Makes it possible to design at a higher level of
abstraction

• Enhances communication

“The Hardest part of programming is coming up with

good variable [function and type] names”

Problem

• Describes when to apply the pattern

• Explains the problem and its context

• May describe specific design problems and/or

object structures

• May contain a list of preconditions that must

be met before it makes sense to apply the

pattern

20/05/2013

5

Solution

• Describes the elements that make up the

– design

– relationships

– responsibilities

– collaborations

• Does not describe specific concrete
implementation

• Abstract description of design problems and
how the pattern solves them

Consequences

• Results and trade-offs of applying the pattern

• Critical for:

– evaluating design alternatives

– understanding costs

– understanding benefits of applying the pattern

• Includes the impacts of a pattern on a system’s:

– flexibility

– extensibility

– portability

20/05/2013

6

Design Patterns are NOT

• Designs that can be encoded in classes and reused as

is (like linked lists and hash tables)

• Complex domain-specific designs (for an entire

application or subsystem)

• They are “Descriptions of communicating objects and

classes that are customized to solve a general design

problem in a particular context”

Describing Design Patterns

• Graphical notation is generally not sufficient

• In order to reuse design decisions the

alternatives and trade-offs that led to the

decisions are critical knowledge

• Concrete examples are also important

• The history of the why, when, and how set the

pattern for the context of usage

20/05/2013

7

Design Patterns summary

• Describe a recurring design structure

– Defines a common vocabulary

– Abstracts from concrete designs

– Identifies classes, collaborations, and

responsibilities

– Describes applicability, trade-offs, and

consequences

Categorization Terms

• Scope is the domain over which a pattern

applies

– Class Scope: relationships between base classes

and their subclasses (static semantics)

– Object Scope: relationships between objects

• Some patterns apply to both scopes.

20/05/2013

8

Types of Patterns

• Creational patterns:

– Deal with initializing and configuring classes and objects

• Structural patterns:

– Deal with the structural implementation of classes and
objects

– Composition of classes or objects

• Behavioral patterns:

– Deal with dynamic interactions among societies of classes
and objects

– How they distribute responsibility

Some examples of Design Patterns

20/05/2013

9

Decorator Pattern

Decorator pattern description

• Intent

– Attach additional responsibilities to an object
dynamically. Decorators provide a flexible alternative
to subclassing for extending functionality.

• Also known as “Wrapper”

• Motivation

– Sometimes we want to add responsibilities to
individual objects, not to an entire class. A graphical
user interface toolkit, for example, should let you add
properties like borders or behaviors like scrolling to
any user interface component.

20/05/2013

10

Scope: add responsabilities to

individual objects

• One way to add responsibilities is with inheritance. Inheriting a

border from another class puts a border around every subclass

instance. This is inflexible, however, because the choice of border is

made statically. A client can't control how and when to decorate the

component with a border.

• A more flexible approach is to enclose the component in another

object that adds the border. The enclosing object is called a

decorator. The decorator conforms to the interface of the

component it decorates so that its presence is transparent to the

component's clients. The decorator forwards requests to the

component and may perform additional actions (such as drawing a

border) before or after forwarding.

Motivation for Decorator Pattern

• Suppose we have a TextView object that displays text in a window.
TextView has no scroll bars by default, because we might not always
need them. When we do, we can use a ScrollDecorator to add them.
If we also want to add a thick black border around the TextView, we
can use a BorderDecorator to add this as well.

20/05/2013

11

Decorator Pattern structure

Decorator pattern: applicability

• Use the Decorator pattern for:

– add responsibilities to individual objects dynamically

and transparently, that is, without affecting other

objects.

– responsibilities that can be withdrawn.

– when extension by subclassing is impractical.

Sometimes a large number of independent extensions

are possible and would produce an explosion of

subclasses to support every combination. Or a class

may be hidden or unavailable for subclassing.

20/05/2013

12

Decorator Pattern: participants

• Component (VisualComponent)

– defines the interface for objects that can have
responsibilities added to them dynamically

• ConcreteComponent (TextView)

– defines an object to which additional responsibilities can
be attached

• Decorator

– maintains a reference to a Component object and defines
an interface that conforms to Component's interface

• ConcreteDecorator (BorderDecorator, ScrollDecorator)

– adds responsibilities to the component

Decorator Pattern: consequences (1/2)

• More flexibility than static inheritance.

– The Decorator pattern provides a more flexible way to add responsibilities to objects

than can be had with static (multiple) inheritance. With decorators, responsibilities can

be added and removed at run-time simply by attaching and detaching them. In contrast,

inheritance requires creating a new class for each additional responsibility and this gives

rise to many classes and increases the complexity of a system.

• Avoids feature-laden classes high up in the hierarchy.

– Decorator offers a pay-as-you-go approach to adding responsibilities. Instead of trying to

support all foreseeable features in a complex, customizable class, you can define a

simple class and add functionality incrementally with Decorator objects. Functionality

can be composed from simple pieces. As a result, an application needn't pay for features

it doesn't use.

20/05/2013

13

Decorator Pattern: consequences (2/2)

• A decorator and its component aren't identical.

– A decorated component is not identical to the component
itself. Hence you shouldn't rely on object identity when
you use decorators.

• Lots of little objects.

– A design that uses Decorator often results in systems
composed of lots of little objects that all look alike. The
objects differ only in the way they are interconnected, not
in their class or in the value of their variables.

Decorator Pattern: sample code (1/4)

class VisualComponent {

public: VisualComponent();

virtual void Draw();

virtual void Resize();

// ...

}

20/05/2013

14

Decorator Pattern: sample code (2/4)

class Decorator : public VisualComponent {
public: Decorator(VisualComponent*);

virtual void Draw();

virtual void Resize();

// ...

private: VisualComponent* _component;

void Decorator::Draw () {
_component->Draw();

}

void Decorator::Resize () {
_component->Resize();

}

}

Decorator Pattern: sample code (3/4)

class BorderDecorator : public Decorator {
public: BorderDecorator(VisualComponent*, int borderWidth);

virtual void Draw();

private: void DrawBorder(int);

private: int _width;

void BorderDecorator::Draw () {
Decorator::Draw();

DrawBorder(_width);

}

}

20/05/2013

15

Decorator Pattern: sample code (4/4)

void Window::SetContents (VisualComponent* contents){

// ...

}

Window* window = new Window;

TextView* textView = new TextView;

window->SetContents(textView);

window->SetContents(

new BorderDecorator(

new ScrollDecorator(textView), 1);

Conclusion

• What Makes it a Pattern? A Pattern must:

– Solve a problem and be useful

– Have a context and can describe where the

solution can be used

– Recur in relevant situations

– Provide sufficient understanding to tailor the

solution

– Have a name and be referenced consistently

20/05/2013

16

Benefits of Design Patterns

• Design patterns enable large-scale reuse of software
architectures and also help document systems

• Patterns explicitly capture expert knowledge and
design tradeoffs and make it more widely available

• Patterns help improve developer communication

• Pattern names form a common vocabulary

• Patterns help ease the transition to OO technology

Drawbacks to Design Patterns

• Patterns do not lead to direct code reuse

• Patterns are deceptively simple

• Teams may suffer from pattern overload

• Patterns are validated by experience and
discussion rather than by automated testing

• Integrating patterns into a software
development process is a human-intensive
activity

20/05/2013

17

Suggestions for Effective Use

• Do not consider everything as a pattern

– Instead, develop strategic domain patterns and reuse

existing tactical patterns

• Institutionalize rewards for developing patterns

• Directly involve pattern authors with application

developers and domain experts

• Clearly document when patterns apply and do not

apply

• Manage expectations carefully

Further readings and References

� Other Design Patterns:
� A Creational Pattern:

“Abstract Factory”

� A Behavioral Pattern:
“Observer”

� Main reference:
� E.Gamma et al. “Design

Patterns: Elements of Reusable
Object-Oriented Software”,
Addison-Wesley, 1995.

� Other references:
� Sommerville, “Software

Engineering”, section 7.2

� Davide Di Ruscio,
“Programmazione Java – Design
Patterns”, Tecnologie dei
Linguaggi di Programmazione

