
Impact of Architectural Smells on Software Performance:
an Exploratory Study

Francesca Arcelli Fontana

University of Milano-Bicocca

Milano, Italy

arcelli@disco.unimib.it

Matteo Camilli

Politecnico di Milano

Milano, Italy

matteo.camilli@polimi.it

Davide Rendina

University of Milano-Bicocca

Milano, Italy

d.rendina2@campus.unimib.it

Andrei Gabriel Taraboi

University of Milano-Bicocca

Milano, Italy

a.taraboi@campus.unimib.it

Catia Trubiani

Gran Sasso Science Institute

L’Aquila, Italy

catia.trubiani@gssi.it

ABSTRACT
Architectural smells have been studied in the literature looking at

several aspects, such as their impact on maintainability as a source

of architectural debt, their correlations with code smells, and their

evolution in the history of complex projects. The goal of this paper is

to extend the study of architectural smells from a different perspec-

tive. We focus our attention on software performance, and we aim

to quantify the impact of architectural smells as support to explain

the root causes of system performance hindrances. Our method

consists of a study design matching the occurrence of architectural

smells with performance metrics. We exploit state-of-the-art tools

for architectural smell detection, software performance profiling,

and testing the systems under analysis. The removal of architec-

tural smells generates new versions of systems from which we

derive some observations on design changes improving/worsening

performance metrics. Our experimentation considers two complex

open-source projects, and results show that the detection and re-

moval of two common types of architectural smells yield lower

response time (up to 47%) with a large effect size, i.e., for 50%-90%

of the hotspot methods. The median memory consumption is also

lower (up to 20%) with a large effect size for all the services.

CCS CONCEPTS
• Software and its engineering→ Software performance; Soft-
ware design techniques.

KEYWORDS
Software Architecture, Architectural Smells, Software Performance

1 INTRODUCTION
Software performance has been recently recognized as the new
correctness [17] since poor performance (e.g., large battery con-

sumption, long execution time, low throughput, high utilization

of resources, etc.) prevents the usage of applications and implies

the failure of large and costly projects [9, 22]. Explaining the per-

formance characteristics of software systems is challenging, it is

not trivial to understand which constituent elements (and their

associated interactions) are responsible for performance issues

Conference’17, July 2017, Washington, DC, USA
2023. ACM ISBN 978-x-xxxx-xxxx-x/YY/MM. . . $15.00

https://doi.org/10.1145/nnnnnnn.nnnnnnn

[6, 21, 42, 43]. An opportunity in this direction is represented by

Architectural Smells [3, 14, 15, 28] (AS) due to their key characteris-

tics of being indicators of poor design choices, later impacting the

quality of software systems. In the literature, the presence of AS

has been recognized to have a strong influence on a variegate set of

system qualities, such as understandability, changeability, usability,

extensibility, and reusability [13, 41].

The investigation of AS as contributors to (poor) software perfor-

mance represents the subject of this paper, and we found that this

aspect is much less investigated in the literature. Few attempts can

be found in [24, 48], and these approaches mainly target microser-

vice systems. There are some efforts devoted to the identification of

the design elements as root causes of software performance prob-

lems [20, 25, 29, 40]. However, to the best of our knowledge, there

is no exploratory study on the correlation between AS and software

performance characteristics. The goal of this paper is to fill this gap

by investigating if AS have an impact on system performance, in

particular, we are interested to study the correlation between the

performance variations of a system and the absence/presence of

AS as indicators of better or worse system performance.

We select, from a catalog of twelve AS [3], three different types

of AS that we found more relevant to our goal of studying the

impact on software performance. Specifically, we focus on God
Class (GC), Cyclic Dependency (CD), and Hub-Like Dependency (HL).

God Class smell is acknowledged as a problem of not well balancing

the load among the available system resources. The problem is that

GC typically violates the modularity principle [26], i.e., most of the

application business is managed by a single or few components that

inevitably become the bottleneck in software performance. This

smell is called in different ways, according to the detection level,

i.e., if the smell is detected at the class or package level. For example,

God Class can be seen as an alias for Insufficient Modularization,

as discussed by Suryanarayana et al. [39], and it is an indicator of

an architectural refactoring opportunity as outlined by Sousa et

al. [10]. Cyclic Dependency and Hub-Like Dependency smells are

instead both symptoms of dependency issues. Dependencies are

of great importance in software performance since the software

components that are highly coupled and with a high number of

dependencies are typically more critical since they have larger

interactions [3]. Besides, CD has been recognized in the literature

as one of the most common smells in the developers’ opinion [27].

https://doi.org/10.1145/nnnnnnn.nnnnnnn

Conference’17, July 2017, Washington, DC, USA Arcelli Fontana, et al.

The detection of the AS is performed with state-of-the-art tools,

i.e., Arcan [12] and Designite [36]. Performance analysis of ap-

plications is performed with well-known profiling tools, i.e., JPro-

filer [30] and Kieker [31]. The contribution of this paper is the

subsequent analysis devoted to quantifying the impact of AS on

the system performance metrics (i.e., CPU utilization and memory

consumption). We evaluate the software performance of the orig-

inal system (including instances of the architectural smell types

mentioned above) and we compare it with modified versions of the

system from which we remove some smell instances.

We perform our analysis on two open-source and real-world

projects: OpenMRS [32] and TeaStore [32]. Since the detection of

Hub-Like Dependency smell found very few instances of this kind

of smell, we focus our refactoring and analysis on the other two

smells. Our results demonstrate that GC and CD have a substantial

impact on the considered performance metrics. According to our

experimental campaign, we obtained the following main findings:

• Refactoring GC and CD smell instances leads to a decrease

of the execution time at the method level up to 42% and 47%,

respectively.

• The median execution time measured in the original sys-

tem version is generally higher compared to the versions

obtained after refactoring. When refactoring CD instances,

we observed large effect size for 50%-80% methods. When

refactoring GC instances, we observed large effect size for

70%-90% methods.

• Refactoring of GC and CD smell instances leads to a decrease

of the memory consumption at the service level up to 16%

and 20%, respectively, with a large effect size for all services.

To summarize, we can assess the architectural smells as promis-

ing means to support software engineers in the task of understand-

ing which design choices may contribute to good or poor perfor-

mance characteristics of software systems.

The sequel of the paper is organized as follows. Section 2 intro-

duces related work. Section 3 presents an overview of the study

design including research questions, while Section 4 delves into

the relevant details of our case studies and tools used in our study

design pipeline. Architectural smells detection and their subse-

quent refactoring are presented in Section 5. The design of our

experiments, major results, lessons learned, and threats to valid-

ity are discussed in Section 6. Final remarks and future work are

reported in Section 7. Replication package is publicly available at

https://doi.org/10.5281/zenodo.7552885.

2 RELATEDWORK
Our work mainly relates to two streams of research, i.e., AS and

software performance that are briefly reviewed in the following.

This paper advances the state-of-the-art in the attempt of adopting

AS for understanding their impact on the system performance. We

make use of automated static analysis and performance monitoring

tools, hence we also discuss related work adopting such tools.

Architectural smells. The AS are surface manifestations of strate-

gic decisions concerning software architecture that negatively im-

pact the quality of a software system. Different (commercial and

open-source) tools are currently available for architectural smell

detection. Recently researchers studied AS according to different

perspectives. Sas et al. [35] analyze how AS evolve in industrial

embedded systems and provide insights on the effects of AS on

the long-term maintainability and evolvability of the systems. Sas

et al. [34] investigate the relation between source code changes

and AS. In particular, they study whether the frequency and size

of changes are correlated with the presence of a selected set of AS.

They found that change frequency increases after the introduction

of a smell and the size of changes are also larger in smelly artifacts.

Arcelli et al. [11] analyze whether AS are independent or can be

derived from a code smell or from one category of them. They

observe that AS are independent from code smells, and therefore

deserve special attention by researchers interested in investigating

their actual harmfulness. Sharma et al. [37] investigate correlation,

collocation, and causation relationships between architecture and

design smells. They found that AS are highly correlated with design

smells. Overall, researchers have studied various aspects of AS, but

to the best of our knowledge, the impact of AS on performance

issues has not been explored yet.

Software performance. It is a pervasive quality of software sys-

tems, and it is difficult to understand which components contribute

to (poor) performance since many aspects are involved: the design,

the implementation code, and the execution environment [23]. The

focus of this paper is on the analysis of design choices, in fact, we

make use of AS that recognize bad practices impacting software

performance. There are some approaches in the literature that aim

to identify the architectural elements representing the root causes

of performance problems. For instance, Ibidunmoye et al. [20] sur-

vey the works targeting the performance of computing systems

through anomaly detection and bottleneck identification. More re-

cently, Liu et al. [24] present an empirical study on the correlations

between runtime performance deficiencies and bad smells, how-

ever, the selected smells are specific to microservice systems and

performance metrics relate to Kubernetes nodes only. Zhong et

al. [48] investigate the possible impacts, causes, and solutions of

AS, however, the smells relate to microservice systems also in this

study, and architects in the industry acknowledge the difficulty of

recognizing performance-related problems in the early stages of

software development. Avritzer et al. [2] exploit software perfor-

mance antipatterns to support continuous integration, delivery, and

deployment pipelines, but it is the load testing that mainly drives

the occurrence of performance issues. To summarize, to the best of

our knowledge, there is no comprehensive study on AS quantifying

their impact on software performance, as we do in this paper.

Automated static analysis tools. We use Arcan [12] and Desig-

nite [36] tools to detect architectural smells. Herold [19] also uses

Arcan, however, the goal is to investigate the association between

three types of AS and the existence of architecture-violating depen-

dencies as manifestations of architectural degradation. Sharma et

al. [8] exploit Designite to detect AS, but they empirically explore

the degree of adherence of AS occurrences to the Pareto princi-

ple. They observe that a software development team optimizes the

refactoring efforts focusing on a few components and attaining the

maximum benefits.

Performance monitoring. To monitor software performance, we

use JProfiler [30] and Kieker [18] tools. Velez et al. [44] adopt

JProfiler to measure performance at the method level, but their

goal is to parameterize performancemodels that are built to evaluate

https://doi.org/10.5281/zenodo.7552885

Impact of Architectural Smells on Software Performance: an Exploratory Study Conference’17, July 2017, Washington, DC, USA

case study

selection1 smell detection

(static analysis)2

source systems

(main version)

refactoring of

smells3

common

smells

experiments

(dynamic analysis)4

target systems

(refactored version) RQ results

Figure 1: Study design pipeline

configurable systems. Reichelt et al. [33] focus on performance

analysis at the code level, and they refer to Kieker as a monitoring

framework that is able to detect small performance changes.

3 STUDY DESIGN
3.1 Research questions
The major goal of our research is to understand the extent to which

common AS affect the system performance characteristics. Thus,

we investigate the following research questions.

RQ1: What is the quantitative impact of common architectural
smells on execution time?
The motivation behind this question is that execution time

is considered fundamental in software systems [5, 7]. There

are several examples of project disposal and financial loss

due to responsiveness problems [38].

RQ2: What is the quantitative impact of common architectural
smells on memory consumption?
The rationale behind this question is that memory is a

symptom of resources usage, hence, as the available mem-

ory may fluctuate meanwhile the system is running, it is

indeed relevant to assist practitioners in examining mem-

ory usage and identifying optimization opportunities [4].

3.2 Pipeline overview
As illustrated in Fig. 1, the study design adopts a pipeline composed

of four steps: 1○ case study selection; 2○ architectural smell de-

tection (i.e., static analysis); 3○ refactoring of smells; and then 4○
experiments (i.e., dynamic analysis).

The workflow is as follows. Starting from the scope defined

by our research questions RQ1-RQ2, we first 1○ selected existing

open source representative benchmarks: a monolithic system fol-

lowing a service-oriented architecture called OpenMRS [32], and a

well-known microservices system benchmark called TeaStore [45].
After collecting the latest versions of these two benchmarks, hence-

forth referred to as original (or main) versions, we 2○ statically

analyzed the codebase to detect the presence of possible AS. In this

stage, we leverage existing off-the-shelf detection tools: Arcan [12]

and Designite [36]. We identified GC and CD as the smells asso-

ciated with the highest detection rate. The rate associated with

the smell HL follows GC and CD, however, the total number of

actual instances in this latter category is rather small. Since the

static analysis identified GC and CD as the most common smells,

we focused on these two smells in the next stages of the pipeline.

After the detection, we 3○ manually inspected the source code of

the two systems to refactor some of the found smell instances. In

particular, we took into account all GC and CD smells, and, for

each occurrence, we analyzed the source code to check the actual

Table 1: Summary of selected case studies

Project Version #LoC #Packages #Classes

OpenMRS1 2.5.3 196, 573 90 1, 168

TeaStore2 1.4.1 11, 243 38 115

existence. For true positive occurrences, we applied refactoring

actions to the source code, thus removing the corresponding in-

stances. This specific activity has been carried out following the

best practices defined in [46]. Interestingly, we found that the re-

moval of one smell may produce the nice effect of solving further

detected smells. This means that solving 𝑛 smells can produce the

solution of𝑚 (with𝑚 > 𝑛) AS. As future work, we are interested

in further investigating those refactorings that solve multiple AS.

The outcome of the third stage is a set of target systems. Each tar-

get system has been obtained from the original one by removing

as many architectural smell occurrences as possible in each cat-

egory (i.e., GC and CD). Both original and target versions of the

two selected case studies have been analyzed dynamically in our

4○ experimental campaign, that is, the final stage of our pipeline.

We designed and conducted a number of experiments to analyze

the usage of resources (both CPU and memory) in the original and

target versions of our case studies. The raw measurements were

collected to carry out a pairwise comparison between the original

and target software systems versions, with the ultimate goal of

answering the research questions.

4 CASE STUDIES AND TOOLS
4.1 Case studies
We select two different well-known open-source service-based sys-

tems commonly adopted as benchmarks in the software perfor-

mance engineering research community [32, 45]. Table 1 lists the

two case studies along with the information about the specific ver-

sions we adopted, the size of the projects in terms of the number

of Lines of Code (LoC), packages, and classes. The first case study

is a medical record system, namely OpenMRS, which consists of a

service-based monolith architecture. The second analyzed project

is called TeaStore, and it is an open-source e-commerce system

showing a microservices architecture.

4.1.1 OpenMRS. This case study is a customizable electronic Med-

ical Record System (MRS). The mission of OpenMRS is to improve

healthcare delivery in resource-constrained environments by coor-

dinating a global community that creates a robust, scalable, user-

driven, open-sourcemedical record system platform. To achieve this

1
https://github.com/openmrs/openmrs-core

2
https://github.com/DescartesResearch/TeaStore

https://github.com/openmrs/openmrs-core
https://github.com/DescartesResearch/TeaStore

Conference’17, July 2017, Washington, DC, USA Arcelli Fontana, et al.

Arcan

Designite

system

codebase

(main version)

engineerarchitectural

smells

system

codebase

(NoGC version)

system

codebase

(NoCD version)

NoGC Docker images

NoCD Docker images
Docker

Postman

CPU usage

memory consumption

2 smell detection (static analysis) smell refactoring (manual activity)3 4 experiments (dynamic analysis)

GitHub repository

JProfiler Kieker

testbed

Figure 2: Pipeline zoom in (stages 2-4)

goal, the system adopts amodular architecture, where the additional

components can be attached to the core one called OpenMRSCore.
The core module implements the main business logic of the whole

system usingApache Tomcat
3
. It stores/retrieves the data into/from

a MySQL
4
relational database, using mainstream solutions to map

project entities into tables. In addition to the core module, the

REST module of the system exposes RESTful APIs that we used to

carry out end-to-end tests of the major functions. The system is

equipped with pre-loaded datasets describing dummy patients and

their medical records.

4.1.2 TeaStore. This case study adopts a microservices architec-

tural style and implements six main microservices interacting via

lightweight communication mechanisms using RESTful APIs and

common technology stacks (e.g., Docker containers
5
, Netflix Rib-

bon client-side load-balancer
6
). The main microservices are:

• Image Provider Service. It provides all the images related to

the products (i.e., tea varieties).

• WebUI Service. It exposes the functions used by the web UI

and acts as an API gateway for the external actors interacting

with the application.

• Authentication Service. It implements authentication and ac-

cess control mechanisms.

• Recommender Service. Given the history of orders, it recom-

mends available products users may like.

• Persistence Provider Service. It is responsible for data persis-
tence handling the CRUD (i.e., Create, Read, Update, and

Delete) operations executed onto the database.

• Registry Service. It acts as a dynamic registry for all the other

services to avoid thigh coupling between them.

4.2 Tools
Figure 2 illustrates a more detailed view of the main steps of our

pipeline. In particular, it zooms into the following stages: 2○ smell

detection, 3○ smell refactoring, and 4○ experiments. According to

Fig. 2, we need different tools to build these stages. We categorize

the tools into: static analysis (AS detection) and dynamic analysis
(deployment, testing, and profiling tools). In the following, we list

and briefly describe all these tools.

3
https://tomcat.apache.org/

4
https://www.mysql.com/

5
https://docs.docker.com/

6
https://github.com/Netflix/ribbon

4.2.1 Static Analysis. We used Arcan [12] and Designite [36]

tools to perform the static analysis of the codebases and detect AS.

The tool Arcan
7
has been used to detect CD and HL smells.

Arcan supports different programming languages such as Java,

Python and C#. We decided to use this tool because it supports code

inspection and it also provides a smart visualization of the relation-

ship between class objects, i.e., an intuitive and easy-to-understand

graph representation. This feature indeed simplifies the identifi-

cation of possible refactoring steps to remove the detected smell

instances. The tool additionally allows the smells to be tracked over

multiple software versions (i.e., the so-called feature Number of
Smells Over Time). We took advantage of this latter feature, espe-

cially while analyzing and refactoring OpenMRS since for this case
study we detected more than 500 smell instances. A comprehensive

description of Arcan detection strategies can be found in [12, 34].

As shown in Fig. 2, we complement the results obtained through

Arcan by using Designite
8
to detect the GC smell.

It is worth noting that the version we used of Designite for

Java programs (i.e., to analyze the codebases of our systems) does

not support the detection of GC smells directly, while it detects the

smell Insufficient Modularization. According to the work presented

in [39], the smell is defined as “an abstraction that has not been com-
pletely decomposed, and a further decomposition could reduce its size,
implementation complexity, or both”. This statement is consistent

with the original definition of GC, hence this AS can be seen as

an alias for Insufficient Modularization, as outlined in [39]. In our

study, we consider them as synonyms and we henceforth refer to

both of them as GC smells.

4.2.2 Dynamic analysis. According to Fig. 2, to conduct the ex-

periments stage of the pipeline, we used Docker to build and run

multiple software images (i.e., all the considered versions of the two

selected systems) onto our testbed. We used both JProfiler [30]

and Kieker [31] profiling tools to monitor and collect information

during the experiments we executed by means of Postman
9
.

Docker. Docker is an open-source project that automates the

process of deploying applications within software containers, pro-

viding additional abstraction through virtualization at the operating

system level. To build, deploy, and run all the software images of

7
https://docs.arcan.tech/2.8.0/

8
https://www.designite-tools.com/features/

9
https://www.postman.com/

https://tomcat.apache.org/
https://www.mysql.com/
https://docs.docker.com/
https://github.com/Netflix/ribbon
https://docs.arcan.tech/2.8.0/
https://www.designite-tools.com/features/
https://www.postman.com/

Impact of Architectural Smells on Software Performance: an Exploratory Study Conference’17, July 2017, Washington, DC, USA

Table 2: Smell detection and refactoring statistics

Smells GC CD HL

OpenMRS TeaStore OpenMRS TeaStore OpenMRS TeaStore

Detected 133 2 541 11 2 2

Refactored 31 2 26 8 0 1

Tot. refactored 33 34 1

our target systems (OpenMRS and TeaStore), we used the docker-
compose configuration files that are available in the original code-

base of the two systems.

JProfiler. JProfiler [30] is a profiling tool that has been selected

due to several reasons. First, it collects all the information we need

about CPU and memory. Concerning memory consumption, we

collect metrics on live and dead objects allocated in the memory and

cleaned by the garbage collector. JProfiler traces CPU hotspots at

the method level and provides the user with an easy-to-use compar-

ison function for the recorded snapshots. These features are of key

relevance for measuring the extent to which changes introduced

by smell refactoring affect system performance. JProfiler is well

integrated with Docker, in fact, it can be automatically associated

to running software images. We use JProfiler to record (i) live and

dead objects during all the experiments executed with both case

studies; and (ii) CPU hotspots during all the experiments executed

with OpenMRS. To trace hotspots of TeaStore, instead, we use the
Kieker profiling tool, hereafter more details are reported.

Kieker. Kieker [18] is a Java-based performance monitoring and

dynamic software analysis framework which enables performance

monitoring at the method level for the CPU hotspots. We used

Kieker to monitor all the versions of TeaStore since the original
codebase is equipped with Kieker instrumentation that is already

implemented. During the deployment of TeaStore, we selectively
activated the performance monitoring only on the microservices

in which AS instances were found. In this case, we used JProfiler

to monitor the memory consumption (live and dead objects), and

Kieker to monitor the CPU hotspots of interest.

Postman. Postman10 is a platform that can be adopted to build

and generate calls to REST services. As described above, the two

selected service-based systems expose RESTful APIs to external

actors. Thus, we used Postman to generate valid API calls that

have been recorded into Python scripts. We then run the scripts to

launch multiple end-to-end (e2e) tests to the API gateway running

onto our testbed. The e2e tests have been executed locally to avoid

latency issues and reduce the risk of obtaining unreliable results.

The result of the e2e tests is aimed to compare the different project

versions, the goal is to analyze performance fluctuations introduced

by refactoring the AS.

5 SMELL DETECTION AND REFACTORING
5.1 Architectural smells detection
As described in Sec. 3.2, to answer our research questions, we car-

ried out a pairwise performance comparison between the original

version and the refactored versions of the two case studies.

10
https://www.postman.com/api-documentation-tool/

Table 2 summarizes the number of detected smells by using

Arcan and Designite per category and each case study. We can

observe that the number of smells detected in the codebase of

OpenMRS is generally higher compared to TeaStore. The difference
is mainly due to: (1) the size of the projects, and (2) the aging

factors. Indeed, TeaStore is a relatively smaller project compared

to OpenMRS which is instead bigger and more legacy. The data

in Table 2 shows that the highest number of detected instances

in OpenMRS belongs to the GC category. The highest number of

detected instances in TeaStore is instead found in the CD category.

The HL smell yields a low number of instances. As anticipated in

Sec. 3.2, based on these results, we decide to focus our study on

GC and CD since they are the most common smells. As opposite,

the number of HL instances prevents a follow-up study on this AS

since our two selected case studies include few instances and there

is not a wide margin of refactoring actions.

5.2 Architectural smells refactoring
According to Fig. 2, the smell refactoring stage is a manual activity

carried out by the authors based on common best practices and

guidelines described below. The number of detected smells suggests

that the complexity of refactoring the two systems is indeed dif-

ferent since OpenMRS includes a much larger number of instances

compared to TeaStore. Table 2 shows the number of smell in-

stances that have been removed after applying refactoring actions

on the original codebase of the two systems. Concerning OpenMRS
we remove 31 smell instances for GC and 26 occurrences of CD that

represent 23% (31/133) and roughly 5% (26/541) of the detected AS

types, respectively. Concerning TeaStore both Arcan and Desig-

nate detect a smaller number of smells, and the refactoring applies

to all instances for GC and 72% (8/11) for CD. Overall, we consider
a total number of refactorings that is very similar, i.e., 33 for GC

and 34 for CD. It is worth noting that in TeaStore, the AS have

been detected in a subset of microservices, i.e., the ImageProvider
and PersistenceProvider services. In this case, we profiled and

monitored only these two components during the experiments.

The refactoring activity has been conducted following the guide-

lines of Suryanarayana et al. [39], consisting of a refactoring catalog

for many AS including both GC and CD.

Refactoring of GC smells. Concerning GC smells, we mainly ap-

plied two different strategies according to the following conditions.

Extract Class. Some of the classes in the two projects show a large

number of attributes. This often affects the number of implemented

methods as well as the size of the class itself. In this case, we extract

one or more new classes by moving related attributes and methods

to obtain possibly better separation of concerns. In OpenMRS this

represents the hardest strategy since refactoring actions in this

category are often disruptive. Indeed, modifying “god” classes (e.g.,

Hibernate configuration classes in OpenMRS) causes a lot of addi-
tional changes in all the other dependent classes. This means that

the modification is not isolated, there are several classes involved

in this type of refactoring. We applied the extract class strategy also
in the case of large utility classes to get smaller classes and achieve

possibly better separation of concerns. By applying this strategy,

we removed 9 GC smell instances in total, i.e., 27% (9/33) of the
implemented refactorings.

https://www.postman.com/api-documentation-tool/

Conference’17, July 2017, Washington, DC, USA Arcelli Fontana, et al.

Split Service. In some cases, the classes implementing the business

logic of (micro)services serve a lot of different client types, hence

limiting the separation of concerns. To avoid this scenario, we split

one service into multiple services directly modifying the existing

DAO and Hibernate configuration files for accessing the database.

This means that requests of different types are re-directed to specific

(micro)services, instead of being managed by a unique resource that

inevitably becomes the system bottleneck. Applying this technique,

we removed 24 GC smell instances in total, i.e., 73% (24/33) of the
implemented refactorings.

Refactoring of CD smells. Concerning CD smells, we mainly con-

sidered three different strategies as follows.

Encapsulation. In some cases, the projects show classes used as

data containers only. An example in OpenMRS is represented by

the class AllergyReaction used only by the class Allergy as a

data structure to maintain the reactions to a specific allergy. The

refactoring strategy adopted in this case is the encapsulation, and
it leads to removing 7 CD smell instances. Indeed, the principle of

encapsulation advocates the separation of concerns and informa-

tion hiding. Hiding implementation details and variations are two

techniques that enable the effective application of this refactoring.

Remove Middle Man. The projects show classes with a number

of methods that simply delegate the tasks to other components. We

handled this situation by using the Remove Middle Man refactoring

strategy, which means removing these methods and forcing the

client to call directly the methods that are responsible for the exe-

cution of certain tasks. Typical refactoring steps of this strategy are

(i) the creation of a getter method for accessing the delegate-class

object from the main-class object and (ii) the replacement of all the

calls to delegating methods in the main-class with direct calls to

methods in the delegate-class. This technique leads to removing 3

CD smells in total.

Move Method. Most of the smell instances have been removed by

applying this refactoring strategy. It consists of moving methods

from the original class to a target one, and we remove 20 CD smell

instances in total. In all cases, we move the original method into

the class having the highest call frequency. We then refactor all the

calls to the original method that shall instead call the new method.

It is worth noting that when refactoring CD smells we imple-

mented 30 design changes in total (i.e., 7 encapsulation, 3 remove

middle man, 20 move method). However, according to Table 2, the

effect of these changes is the solution of 34 smell instances. As

anticipated in Section 3.2, we found that a refactoring action does

not necessarily map one-to-one with a smell removal. We aim at

investigating this latter point as part of our future research.

6 EXPERIMENTS
6.1 Design of the experiments
To answer the research questions, we carried out a number of

experiments on the two selected case studies introduced in Sec. 4.1.

For each system we consider three different versions:

• original (or main) version (OpenMRS, TeaStore);
• after GC refactoring (OpenMRS_NoGC, TeaStore_NoGC);
• after CD refactoring (OpenMRS_NoCD, TeaStore_NoCD).

Table 3: Mapping between RQs and measurement data

RQ subject systems data statistical tests

RQ1

impact on

execution

time

OpenMRS
TeaStore
OpenMRS_NoGC
TeaStore_NoGC
OpenMRS_NoCD
TeaStore_NoCD

CPU

hotspots

Mann-Whitney U test

Vargha-Delaney 𝐴̂𝐴𝐵

RQ2

impact on

memory

consumption

OpenMRS
TeaStore
OpenMRS_NoGC
TeaStore_NoGC
OpenMRS_NoCD
TeaStore_NoCD

live/dead

objects

Mann-Whitney U test

Vargha-Delaney 𝐴̂𝐴𝐵

Table 3 maps each research question to the analyzed systems’ ver-

sions, the measurement data carried out during the experiments,

and the conducted statistical tests [1].

We repeat e2e tests 20 times for each system version. Each e2e

test has been created using Postman according to the documen-

tation of the system, and it repeatedly generates synthetic users

that simulate realistic interactions through the exposed RESTful

APIs. Each test issues a large sample of requests (∼ 5800 for Open-

MRS, and ∼ 7400 for TeaStore) to reduce the risk of obtaining bi-

ased results. During each e2e test we measure the CPU hotspots

(milliseconds) and the live/dead objects (bytes) that represent the

measurements to understand how AS impact on execution time

and memory consumption, respectively.

We additionally perform a pairwise comparison of the datasets

(both cpu hotspots and live/dead objects) collected for all system

versions. As reported in Table 3, we detect statistical significance us-

ing the Mann-Whitney U-test [47] (significance level 𝛼 = 0.05) and

we calculate the non-parametric Vargha and Delaney’s 𝐴𝐴𝐵 [16] to

capture the effect size of the difference between 𝐴 and 𝐵, typically

characterized as follows: small (𝐴𝐴𝐵 ≥ 0.56), medium (𝐴𝐴𝐵 ≥ 0.64),

and large (𝐴𝐴𝐵 ≥ 0.71).

All the e2e tests have been executed on Dockerized system im-

ages deployed onto our testbed, i.e., a commodity hardwaremachine

equipped with 2.3 GHz Dual-Core Intel Core i5 CPU, and 8 GB 2133

MHz LPDDR3 RAM.

6.2 Results
6.2.1 RQ1 (impact on execution time). As anticipated above, for

each case study and system version, we run 20 e2e tests and we

measure the CPU hotspots at the method level. For each test, we

collect the total execution time for each method, and then we rank

all the methods in descending order to identify the most expensive

methods executed by the services of the target system. Note that

we select ten methods (𝑜1-𝑜10) for OpenMRS and the TeaStore

persistence service, whereas the TeaStore image service includes

eight methods in total, hence we rank those ones (𝑜1-𝑜8).

Figure 3 shows the box plots of the CPU hotspots for each an-

alyzed system service: OpenMRS (monolithic service in Fig. 3a),

TeaStore (image service in Fig. 3b), and TeaStore (persistence ser-

vice in Fig. 3c). Each box plot illustrates, for all versions, the total

execution time (expressed in milliseconds) of the most expensive

methods over all e2e tests. We can observe that the order of magni-

tude varies between: 10
4
and 10

7
milliseconds for methods executed

Impact of Architectural Smells on Software Performance: an Exploratory Study Conference’17, July 2017, Washington, DC, USA

1e+04

1e+05

1e+06

1e+07

o1 o2 o3 o4 o5 o6 o7 o8 o9 o10
operation

m
ill

is
ec

on
ds version

main
nocd
nogc

(a) OpenMRS (monolithic service)

1e+04

1e+05

1e+06

1e+07

o01 o02 o03 o04 o05 o06 o07 o08
operation

m
ill

is
ec

on
ds version

main
nocd
nogc

(b) TeaStore (image service)

1e+02

1e+04

1e+06

o01 o02 o03 o04 o05 o06 o07 o08 o09 o10
operation

m
ill

is
ec

on
ds version
main
nocd
nogc

(c) TeaStore (persistence service)

Figure 3: CPU hotspot data collected from the e2e tests

by the OpenMRSmonolithic service and the TeaStore image service;

and 10
2
and 10

6
milliseconds for methods executed by the TeaStore

Table 4: CPU hotspot 𝐴𝐴𝐵 effect size

o1 o2 o3 o4 o5 o6 o7 o8 o9 o10

𝐴 𝐵 = OpenMRS (monolithic service)

OpenMRS_NoCD 0.88 0.94 0.72 0.68 0.58 0.12 0.70 0.72 0.74 0.54
OpenMRS_NoGC 0.81 0.7 0.59 0.74 0.88 0.79 0.56 0.8 0.94 0.73

𝐴 𝐵 = TeaStore (image service)

TeaStore_NoCD 0.85 0.36 0.85 0.85 0.85 0.89 0.85 0.36 - -

TeaStore_NoGC 0.86 0.38 0.88 1.00 0.86 0.87 0.86 0.38 - -

𝐴 𝐵 = TeaStore (persistence service)

TeaStore_NoCD 0.55 0.88 0.89 0.89 1.00 0.59 0.82 0.82 0.46 0.71
TeaStore_NoGC 0.52 1.00 0.86 0.86 1.00 0.74 0.79 0.81 0.78 0.78

Table 5: CPU hotspot p-value

o1 o2 o3 o4 o5 o6 o7 o8 o9 o10

𝐴 𝐵 = OpenMRS (monolithic service)

OpenMRS_NoCD 0.000 0.035 0.365 0.007 0.000 0.001 0.547 0.001 0.000 0.012
OpenMRS_NoGC 0.000 0.000 0.020 0.056 0.365 0.000 0.029 0.019 0.001 0.643

𝐴 𝐵 = TeaStore (image service)

TeaStore_NoCD 0.000 0.289 0.000 0.000 0.000 0.000 0.000 0.289 - -

TeaStore_NoGC 0.000 0.210 0.000 0.000 0.000 0.000 0.000 0.210 - -

𝐴 𝐵 = TeaStore (persistence service)

TeaStore_NoCD 0.576 0.000 0.000 0.000 0.000 0.305 0.000 0.000 0.653 0.009
TeaStore_NoGC 0.839 0.000 0.000 0.000 0.008 0.001 0.000 0.001 0.78 0.027

persistence service. The skewness also largely varies across the

methods, and it is generally higher for those methods involving

persistent data (e.g., 𝑜9, 𝑜10 in Fig. 3a and 𝑜6, 𝑜7, 𝑜9 in Fig. 3c). The

median execution time of the original (main) version is generally

higher compared to the corresponding NoCD and NoGC versions.
After refactoring GC and CD smell instances in OpenMRS, the

execution time at the method level decreases up to 42% and 47%,

respectively. According to the 𝐴𝐴𝐵 effect size in Table 4, we can

observe that OpenMRS_NoCD is better than OpenMRS for 9 out of 10
methods. In particular, we have a large (green cells) and medium

(white cells) effect size for 50% and 40% of the methods, respectively.

The version OpenMRS_NoGC is always better than OpenMRS with

either large (70% methods) or medium (30% methods) effect size.

According to Table 5, theMann-Whitney U-test detected statistically

significant results in 80% of the methods for both OpenMRS_NoCD
and OpenMRS_NoGC (i.e., p-value less than 0.05).

After refactoring GC and CD smell instances in TeaStore, we
can observe that the execution time at the method level decreases

up to 40% and 38%, respectively. Considering the image service,

we can observe that both TeaStore_NoCD and TeaStore_NoGC are

better than TeaStore for 6 out of 8 methods with large effect size.

For the remaining 2 methods (𝑜2 and 𝑜8 in both cases) the effect

size is less than 0.5 but, according to Table 5, results are not statis-

tically significant. Considering instead the persistence service, the

TeaStore_NoCD is better for 90% of the methods. For 80% of them,

we observe a large effect size and no statistically significant results

for the remaining 2 methods. The TeaStore_NoGC is better for 90%

of the methods with large effect size. The remaining method (𝑜1)

has no statistical significance.

Conference’17, July 2017, Washington, DC, USA Arcelli Fontana, et al.

6.8e+07

6.9e+07

7.0e+07

7.1e+07

core
service

by
te

s version
main
nocd
nogc

(a) OpenMRS (monolithic service)

5e+05

6e+05

7e+05

8e+05

9e+05

1e+06

image persistence
service

by
te

s version
main
nocd
nogc

(b) TeaStore (image and persistence services)

Figure 4: Memory usage datasets collected in the e2e tests

RQ1 summary. After refactoring GC and CD smell instances,

the execution time at the method level decreases up to 42% and

47%, respectively. The median execution time measured in the

original version is generally higher compared to the correspond-

ing NoCD and NoGC versions for both systems (OpenMRS and

TeaStore). Considering the NoCD versions, we observe a large

effect size for 50%-80% methods. Considering the NoGC versions,

we also observe a large effect size for 70%-90% methods.

6.2.2 RQ2 (impact on memory consumption). For all e2e tests ex-
ecuted on each case study and specific versions, we measure the

total memory consumption (bytes) for each service in terms of live

and dead objects. Figure 4 shows two box plots of the memory

consumption measured for the two systems: OpenMRS (monolithic

service in Fig. 4a) and TeaStore (image and persistence services in

Fig. 4b). The order of magnitude is 10
7
bytes for OpenMRS and it

varies between 10
5
and 10

6
bytes for TeaStore.

About memory consumption measurements (see Figure 4), we

can observe the following trend. The median memory consumption

Table 6: Memory consumption 𝐴𝐴𝐵 effect size

𝐴 𝐵 = OpenMRS (monolithic service)

OpenMRS_NoCD 1.00

OpenMRS_NoGC 1.00

𝐴 𝐵 = TeaStore (image service)

TeaStore_NoCD 0.88

TeaStore_NoGC 0.84

𝐴 𝐵 = TeaStore (persistence service)

TeaStore_NoCD 0.94

TeaStore_NoGC 0.85

Table 7: Memory consumption p-value

𝐴 𝐵 = OpenMRS (monolithic service)

OpenMRS_NoCD 0.000

OpenMRS_NoGC 0.000

𝐴 𝐵 = TeaStore (image service)

TeaStore_NoCD 0.000

TeaStore_NoGC 0.000

𝐴 𝐵 = TeaStore (persistence service)

TeaStore_NoCD 0.000

TeaStore_NoGC 0.000

of the NoCD version is the lowest; the NoGC version has a higher me-

dian than NoCD; and the main version shows the highest value. The

trend holds for both services of TeaStore as well as for OpenMRS.
After refactoring GC and CD smell instances in OpenMRS, the mem-

ory consumption at the service level decreases up to 2% and 4%,

respectively. After TeaStore refactoring, the memory consumption

decreases up to 16% and 20%, respectively. This is a key indicator

of AS showing an impact on software performance.

Table 6 indicates that both OpenMRS_NoCD and OpenMRS_NoGC
have large effect size equal to 1.0. Considering the image service

of TeaStore, we always have a large effect size (0.88 and 0.84 for

TeaStore_NoCD and TeaStore_NoGC, respectively). The same holds

for the persistence service (0.94 and 0.85 for TeaStore_NoCD and
TeaStore_NoGC, respectively). Moreover, Table 7 demonstrates that

results are always statistically significant.

RQ2 summary. After refactoring GC and CD smell instances,

we observe a memory consumption reduction up to 16% and

20%, respectively. The median memory consumption of the NoCD
version is the lowest; the NoGC version has a higher median than

NoCD; and the main version has the highest median. Considering

OpenMRS, both NoCD and NoGC versions have a large effect size

equal to 1.0. Considering TeaStore, we also observe a large effect

size between 0.88 and 0.94 for NoCD versions, and between 0.84

and 0.85 for NoGC versions.

6.3 Lessons learned
From the conducted experimentation, we can derive the following

main lessons learned. First, the refactoring of architectural smells

does have a large impact on software performance, both execution

time and memory consumption are largely affected in the consid-

ered systems. Second, there are no straightforward relationships

between methods implemented within a certain operation, in fact

each method shows peculiar variations in the considered perfor-

mance metrics. Third, the refactoring of smells might reveal an

Impact of Architectural Smells on Software Performance: an Exploratory Study Conference’17, July 2017, Washington, DC, USA

opposite impact across methods, i.e., some methods benefit from

the refactoring of one smell type, whereas other methods worsen

their performance characteristics when refactoring the very same

type of smell. Fourth, we found that memory consumption shows a

more regular trend of variation w.r.t. execution time, i.e., all services

under evaluation are beneficially affected more by CD instead of

GC. This can be related to the selected services, we rather do not

generalize any conclusion from this observation. Last, it is worth

remarking that our experimentation considers a coarse granularity

for the refactoring; all architectural smell instances are jointly re-

moved, hence the system versions are embedding several changes,

and it is rather impossible to trace back which instance of smell

was more/less beneficial from a performance-based perspective.

6.4 Threats to validity
External validity. Threats in this category may exist if the charac-

teristics of our case studies are not a generalization of other systems.

We mitigated these threats by considering existing (well-known)

benchmark systems from the literature of software performance

engineering. We considered two systems following two different

mainstream architectural styles: a monolithic service-oriented ar-

chitecture (OpenMRS) and a microservices architecture (TeaStore).
However, we acknowledge that the generalization of our findings

to other systems requires additional experiments.

Internal validity. Threats may be caused by bias in establishing

cause-effect relationships in our experiments. To limit these threats,

we controlled the factors of interest in our case studies as much

as possible. We analyzed the original codebase of both systems to

spot AS and then we refactored the source code to remove the most

severe true positive instances (at least 5% of detected instances).

Fine-grained access to insights automatically extracted from the

source through Arcan and Designate have been crucial to produce

the new versions of both systems and then comparing the results to

find cause-effect relations. Direct manipulation of the source code

to control the presence of AS increases internal validity compared

to observations without manipulation. Smell refactoring is a manual

activity carried out by the authors based on their domain knowledge

and reference guidelines proposed by Suryanarayana et al. [39].

Refactoring conducted by other engineers may lead to different

quantitative results. We tried to mitigate this threat by eliciting the

specific refactoring strategies (e.g., Extract Class and Encapsulation)

adopted for each case study. We also reported the removed number

of smells in each category and related to each strategy.

Conclusion validity. We addressed these threats by reducing the

possibility of obtaining biased results. In particular, for each e2e

test we collected a large sample of requests (∼ 6𝑘 for OpenMRS, and
∼ 7𝑘 for TeaStore). Furthermore, each e2e test has been repeated

20 times for all system versions. We followed well-known guide-

lines in the software engineering research community to assess

the statistical significance of our experiments [1]. In particular, we

conducted pairwise comparisons among the datasets collected for

all system versions using the Mann-Whitney U-test to calculate the

p-value. In addition to statistical differences, we used the Vargha

and Delaney’s 𝐴𝐴𝐵 non-parametric effect size measure.

Construct validity. Threats in this category may arise in case

selected measurements do not reflect the properties of interest of

our study subjects. We limited this threat by assessing their validity

before using them in our experimental campaign. In particular, we

measured the impact on execution time and memory consumption

at the method level and the service level, respectively. We adopted

standard metrics in the performance engineering research commu-

nity: CPU hotspots (execution time) and amount of live/dead objects

(memory consumption). We also adopted standard statistical tests

to carry out a pairwise comparison between the datasets collected

by testing all the system versions. According to the guideline pre-

sented in [47], we used the standard significance level 𝛼 = 0.05 for

the Mann-Whitney U-test. We also followed the common categories

(small, medium, large) and corresponding levels (0.56, 0.64, 0.71) for

the Vargha and Delaney’s 𝐴𝐴𝐵 non-parametric effect size measure

as described in [16].

7 CONCLUSION AND FUTUREWORK
This paper presents an exploratory study on the impact of AS on

software performance with the goal of understanding the extent

to which common AS affect the execution time and memory con-

sumption of software systems. To answer our research questions,

i.e., RQ1 (impact on execution time) and RQ2 (impact on memory

consumption), we define a study design pipeline composed of case

study selection, smell detection, smell refactoring, and experiments.

We consider two well-known open-source systems (OpenMRS and

TeaStore) commonly adopted as benchmarks in the software per-

formance engineering research community, and we focus on two

common smells, i.e., God Class and Cyclic Dependency. Results are,

for the most, statistically significant and they show substantial im-

provements through the removal of smells, with a large effect size.

In fact, after refactoring the detected smell instances, the execution

time at the method level decreases up to 42% and 47%, respectively,

while the memory consumption at the service level decreases up to

16% and 20%, respectively.

Our future research agenda includes the following directions: (i)

extend the investigation to other AS, possibly those whose detection

and refactoring have been assessed; (ii) identify which refactorings

are more promising than others in solving further instances of AS;

(iii) consider other applications, additional programming languages,

and possibly industrial domains.

ACKNOWLEDGMENTS
We thank the anonymous reviewers for their valuable feedback. We

acknowledge the support of MUR PRIN project 2017TWRCNB SE-

DUCE, and the PNRRMUR project VITALITY (ECS00000041) Spoke

2 ASTRA - Advanced Space Technologies and Research Alliance.

REFERENCES
[1] Andrea Arcuri and Lionel Briand. 2011. A Practical Guide for Using Statistical

Tests to Assess Randomized Algorithms in Software Engineering. In International
Conference on Software Engineering. 1–10.

[2] Alberto Avritzer, Ricardo Britto, Catia Trubiani, Matteo Camilli, Andrea Janes,

Barbara Russo, André van Hoorn, Robert Heinrich, Martina Rapp, Jörg Henß, and

Ram Kishan Chalawadi. 2022. Scalability testing automation using multivariate

characterization and detection of software performance antipatterns. J. Syst.
Softw. 193 (2022), 111446.

Conference’17, July 2017, Washington, DC, USA Arcelli Fontana, et al.

[3] Umberto Azadi, Francesca Arcelli Fontana, and Davide Taibi. 2019. Architectural

smells detected by tools: a catalogue proposal. In International Conference on
Technical Debt. 88–97.

[4] Alison Fernandez Blanco, Alexandre Bergel, and Juan Pablo Sandoval Alcocer.

2022. Software visualizations to analyze memory consumption: A literature

review. ACM Computing Surveys (CSUR) 55, 1 (2022), 1–34.
[5] Matteo Camilli, Carmine Colarusso, Barbara Russo, and Eugenio Zimeo. 2023.

Actor-Driven Decomposition of Microservices through Multi-Level Scalability

Assessment. ACM Trans. Softw. Eng. Methodol. (feb 2023). https://doi.org/10.

1145/3583563

[6] Matteo Camilli, Andrea Janes, and Barbara Russo. 2022. Automated test-based

learning and verification of performance models for microservices systems. Jour-
nal of Systems and Software 187 (2022), 111225. https://doi.org/10.1016/j.jss.2022.

111225

[7] Matteo Camilli and Barbara Russo. 2022. Modeling Performance of Microservices

Systems with Growth Theory. Empirical Software Engineering 27, 2 (11 Jan 2022),

39. https://doi.org/10.1007/s10664-021-10088-0

[8] Alexandra-Maria Chaniotaki and Tushar Sharma. 2021. Architecture Smells and

Pareto Principle: A Preliminary Empirical Exploration. In International Conference
on Mining Software Repositories. 190–194.

[9] Domenico Cotroneo, Luigi De Simone, Pietro Liguori, and Roberto Natella. 2021.

Enhancing the analysis of software failures in cloud computing systems with

deep learning. Journal of Systems and Software 181 (2021), 111043.
[10] Leonardo da Silva Sousa, Willian Nalepa Oizumi, Alessandro Garcia, Anderson

Oliveira, Diego Cedrim, and Carlos Lucena. 2020. When Are Smells Indicators of

Architectural Refactoring Opportunities: A Study of 50 Software Projects. In ICPC
’20: 28th International Conference on Program Comprehension, Seoul, Republic of
Korea, July 13-15, 2020. ACM, 354–365. https://doi.org/10.1145/3387904.3389276

[11] Francesca Arcelli Fontana, Valentina Lenarduzzi, Riccardo Roveda, and Davide

Taibi. 2019. Are architectural smells independent from code smells? An empirical

study. J. Syst. Softw. 154 (2019), 139–156.
[12] Francesca Arcelli Fontana, Ilaria Pigazzini, Riccardo Roveda, Damian Tamburri,

Marco Zanoni, and Elisabetta Di Nitto. 2017. Arcan: A tool for architectural

smells detection. In International Workshops on Software Architecture. 282–285.
[13] Francesca Arcelli Fontana, Ilaria Pigazzini, Riccardo Roveda, and Marco Zanoni.

2016. Automatic detection of instability architectural smells. In International
Conference on Software Maintenance and Evolution. 433–437.

[14] Joshua Garcia, Daniel Popescu, George Edwards, and Nenad Medvidovic. 2009.

Identifying architectural bad smells. In European Conference on Software Mainte-
nance and Reengineering. 255–258.

[15] Joshua Garcia, Daniel Popescu, George Edwards, and Nenad Medvidovic. 2009.

Toward a catalogue of architectural bad smells. In International conference on the
quality of software architectures. 146–162.

[16] R.J. Grissom and J.J. Kim. 2005. Effect Sizes for Research: A Broad Practical Approach.
Lawrence Erlbaum Associates.

[17] Mark Harman and Peter W. O’Hearn. 2018. From Start-ups to Scale-ups: Op-

portunities and Open Problems for Static and Dynamic Program Analysis. In

Working Conference on Source Code Analysis and Manipulation. 1–23.
[18] Wilhelm Hasselbring and Andre van Hoorn. 2015. Open-Source Software as

Catalyzer for Technology Transfer: Kieker’s Development and Lessons Learned. Re-
search Report. Department of Computer Science, Kiel University, Kiel, Germany.

http://www.inf.uni-kiel.de/de/forschung/publikationen/technische-berichte/

[19] SebastianHerold. 2020. An Initial Study on the Association BetweenArchitectural

Smells and Degradation. In European Conference on Software Architecture. 193–
201.

[20] Olumuyiwa Ibidunmoye, Francisco Hernández-Rodriguez, and Erik Elmroth. 2015.

Performance anomaly detection and bottleneck identification. ACM Computing
Surveys (CSUR) 48, 1 (2015), 1–35.

[21] Pooyan Jamshidi, Norbert Siegmund, Miguel Velez, Christian Kästner, Akshay

Patel, and Yuvraj Agarwal. 2017. Transfer learning for performance modeling

of configurable systems: An exploratory analysis. In International Conference on
Automated Software Engineering. 497–508.

[22] Herb Krasner. 2021. The cost of poor software quality in the US: a 2020 report.

Proc. Consortium Inf. Softw. QualityTM (2021).

[23] Henry H Liu. 2011. Software performance and scalability: a quantitative approach.
John Wiley & Sons.

[24] Lei Liu, Zhiying Tu, XiangHe, Xiaofei Xu, and ZhongjieWang. 2021. An Empirical

Study on Underlying Correlations between Runtime Performance Deficiencies

and “Bad Smells” of Microservice Systems. In International Conference on Web
Services. 751–757.

[25] Minghua Ma, Zheng Yin, Shenglin Zhang, Sheng Wang, Christopher Zheng, Xin-

hao Jiang, Hanwen Hu, Cheng Luo, Yilin Li, Nengjun Qiu, et al. 2020. Diagnosing

root causes of intermittent slow queries in cloud databases. VLDB Endowment
13, 8 (2020), 1176–1189.

[26] Robert Cecil Martin. 2003. Agile software development: principles, patterns, and
practices. Prentice Hall PTR.

[27] Antonio Martini, Francesca Arcelli Fontana, Andrea Biaggi, and Riccardo Roveda.

2018. Identifying and Prioritizing Architectural Debt Through Architectural

Smells: A Case Study in a Large Software Company. In European Conference on
Software Architecture, Vol. 11048. 320–335.

[28] Haris Mumtaz, Paramvir Singh, and Kelly Blincoe. 2021. A systematic mapping

study on architectural smells detection. Journal of Systems and Software 173
(2021), 110885.

[29] Riccardo Pinciroli, Connie U. Smith, and Catia Trubiani. 2021. QN-basedModeling

and Analysis of Software Performance Antipatterns for Cyber-Physical Systems.

In International Conference on Performance Engineering. 93–104.
[30] JProfiler Project. 2001. JProfiler web site. Retrieved Apr, 2023 from ttps://www.ej-

technologies.com/products/jprofiler/overview.html

[31] Kieker Project. 2001. Kieker web site. Retrieved Apr, 2023 from http://kieker-

monitoring.net/

[32] OpenMRS Project. 2001. OpenMRS web site. Retrieved Apr, 2023 from https:

//openmrs.org/

[33] David Georg Reichelt, Stefan Kühne, and Wilhelm Hasselbring. 2022. Automated

Identification of Performance Changes at Code Level. In International Conference
on Software Quality, Reliability and Security. 916–925.

[34] Darius Sas, Paris Avgeriou, Ilaria Pigazzini, and Francesca Arcelli Fontana. 2022.

On the relation between architectural smells and source code changes. J. Softw.
Evol. Process. 34, 1 (2022).

[35] Darius Sas, Paris Avgeriou, and Umut Uyumaz. 2022. On the evolution and impact

of architectural smells - an industrial case study. Empirical Software Engineering
27, 4 (2022), 86.

[36] Tushar Sharma, Pratibha Mishra, and Rohit Tiwari. 2016. Designite: A Soft-

ware Design Quality Assessment Tool. In International Workshop on Bringing
Architectural Design Thinking into Developers’ Daily Activities. 1–4.

[37] Tushar Sharma, Paramvir Singh, and Diomidis Spinellis. 2020. An empirical

investigation on the relationship between design and architecture smells. Empir.
Softw. Eng. 25, 5 (2020), 4020–4068.

[38] Connie U Smith. 2007. Introduction to software performance engineering: Origins

and outstanding problems. In International School on Formal Methods for the
Design of Computer, Communication and Software Systems. Springer, 395–428.

[39] Girish Suryanarayana, Ganesh Samarthyam, and Tushar Sharma. 2015. Refactor-

ing for Software Design Smells. https://www.sciencedirect.com/science/article/

pii/B9780128013977120016.

[40] Antony Tang, Yan Jin, and Jun Han. 2007. A rationale-based architecture model

for design traceability and reasoning. Journal of Systems and Software 80, 6 (2007),
918–934.

[41] Fangchao Tian, Peng Liang, and Muhammad Ali Babar. 2019. How developers dis-

cuss architecture smells? an exploratory study on stack overflow. In International
conference on software architecture. 91–100.

[42] Catia Trubiani, Aldeida Aleti, Sarah Goodwin, Pooyan Jamshidi, André van

Hoorn, and Samuel Gratzl. 2020. VisArch: Visualisation of Performance-based

Architectural Refactorings. In European Conference on Software Architecture. 182–
190.

[43] Catia Trubiani, Pooyan Jamshidi, Jürgen Cito, Weiyi Shang, Zhen Ming Jiang,

and Markus Borg. 2019. Performance Issues? Hey DevOps, Mind the Uncertainty.

IEEE Softw. 36, 2 (2019), 110–117.
[44] Miguel Velez, Pooyan Jamshidi, Norbert Siegmund, Sven Apel, and Christian

Kästner. 2021. White-box analysis over machine learning: Modeling performance

of configurable systems. In International Conference on Software Engineering.
1072–1084.

[45] Jóakim von Kistowski, Simon Eismann, Norbert Schmitt, André Bauer, Johannes

Grohmann, and Samuel Kounev. 2018. TeaStore: A Micro-Service Reference

Application for Benchmarking, Modeling and Resource Management Research.

In International Symposium on theModelling, Analysis, and Simulation of Computer
and Telecommunication Systems.

[46] Hanzhang Wang, Ali Ouni, Marouane Kessentini, Bruce Maxim, and William I

Grosky. 2016. Identification of web service refactoring opportunities as a multi-

objective problem. In International Conference on Web Services. 586–593.
[47] Rand R Wilcox. 2001. Fundamentals of modern statistical methods: Substantially

improving power and accuracy. Vol. 249. Springer.
[48] Chenxing Zhong, Huang Huang, He Zhang, and Shanshan Li. 2022. Impacts,

causes, and solutions of architectural smells in microservices: An industrial

investigation. Software: Practice and Experience 52, 12 (2022), 2574–2597.

https://doi.org/10.1145/3583563
https://doi.org/10.1145/3583563
https://doi.org/10.1016/j.jss.2022.111225
https://doi.org/10.1016/j.jss.2022.111225
https://doi.org/10.1007/s10664-021-10088-0
https://doi.org/10.1145/3387904.3389276
http://www.inf.uni-kiel.de/de/forschung/publikationen/technische-berichte/
ttps://www.ej-technologies.com/products/jprofiler/overview.html
ttps://www.ej-technologies.com/products/jprofiler/overview.html
http://kieker-monitoring.net/
http://kieker-monitoring.net/
https://openmrs.org/
https://openmrs.org/
https://www.sciencedirect.com/science/article/pii/B9780128013977120016
https://www.sciencedirect.com/science/article/pii/B9780128013977120016

	Abstract
	1 Introduction
	2 Related work
	3 Study Design
	3.1 Research questions
	3.2 Pipeline overview

	4 Case Studies and Tools
	4.1 Case studies
	4.2 Tools

	5 Smell detection and refactoring
	5.1 Architectural smells detection
	5.2 Architectural smells refactoring

	6 Experiments
	6.1 Design of the experiments
	6.2 Results
	6.3 Lessons learned
	6.4 Threats to validity

	7 Conclusion and Future Work
	Acknowledgments
	References

