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Abstract
The design of Cyber-Physical Systems (CPS) is challenging due to the heterogeneity of software and hard-
ware components that operate in uncertain environments (e.g., fluctuating workloads), hence they are prone to
performance issues. Software Performance Antipatterns could be a key means to tackle this challenge since
they recognize design problems that may lead to unacceptable system performance. This manuscript focuses
on modeling and analyzing a variegate set of software performance antipatterns with the goal of quantifying
their performance impact on CPS. Starting from the specification of eight software performance antipatterns,
we build a baseline queuing network performance model that is properly extended to account for the corre-
sponding bad practices. The approach is applied to a CPS consisting of a network of sensors and experimental
results show that performance degradation can be traced back to software performance antipatterns. Sensi-
tivity analysis investigates the peculiar characteristics of antipatterns, such as the frequency of checking the
status of resources, that provides quantitative information to software designers to help them identify poten-
tial performance problems and their root causes. Quantifying the performance impact of antipatterns on CPS
paves the way for future work enabling the automated refactoring of systems to remove these bad practices.

Keywords: Software Modeling, Software Performance Antipatterns, Model-based Performance Analysis, Cyber-Physical
Systems

1 Introduction
In the software development process, there is high
interest in the early validation of requirements, espe-
cially for performance-related characteristics that
(recently) are considered as the new system correct-
ness [1]. This is further motivated by the cost of
fixing errors that has been demonstrated to escalate
exponentially as the project matures through its life
cycle [2]. Predicting performance issues early in soft-
ware development is indeed valuable to avoid fixes
to consolidated software artifacts [3]. Our work deals
with the open problem of understanding the reason

for performance degradation when evaluating differ-
ent design choices (e.g., the frequency of checking the
status of system resources) on the basis of their impact
on the system performance [4].

Software Performance Engineering (SPE) [5] aims
to produce performance models early in development.
In recent years, several approaches have been suc-
cessfully developed to automate the modeling and
analysis of software performance [6,7], and optimiza-
tion techniques [8]. However, the problem of inter-
preting model-based performance analysis results is
still critical, especially when considering modern and
complex application domains, such as cyber-physical
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systems (CPS), where the heterogeneity of software
and hardware components triggers new challenges for
traditional SPE approaches. CPS share with reactive
systems the typical characteristics of handling the
occurrence of events [9] that determine the integration
of computing and communication with the monitoring
and/or control of entities in the physical world.

Our research focuses on understanding the perfor-
mance degradation in CPS. We present an approach
that can be applied to any reactive software system
that may include bad practices leading to performance
problems. There exist many challenges in model-
ing, specifying, and verifying reactive systems [10],
mainly due to the interaction of agents with their
computing environment, hence we are interested in
capturing those system events that may become root
causes of performance issues. Our goal is to identify
the system performance problems by localizing the
software components that may cause such problems.
To achieve this objective, we make use of software
performance antipatterns [11], recently customized for
CPS [12] and detected in open-source projects [13].
The rationale behind this choice is that software per-
formance antipatterns include the description of (i)
design problems that lead to performance issues and
(ii) solutions to the problems that improve perfor-
mance. Consider as an illustrative example the Blob
performance antipattern. It occurs when a single com-
ponent monopolizes the computation managing most
of the work and becomes a system bottleneck. To solve
this, it is necessary to improve the management of the
system workload by delegating work to surrounding
software components in a distributed fashion.

Note that the specification of software perfor-
mance antipatterns in [11] is intentionally generic and
not constrained to application domains, making them
flexible to capture bad practices in different contexts,
e.g., information systems. In this paper we focus on
modeling antipatterns to address the open problem of
investigating which bad practices find a counterpart
for performance issues that may occur in CPS. In our
previous work [14], we focused on three software per-
formance antipatterns defined in [12]. This manuscript
moves a step forward in the direction of extending the
types of bad practices, to provide software developers
an understanding of a larger set of problems. To this
end, we investigate the specification of performance
antipatterns in [11], and we provide models of antipat-
terns along with analysis results that give evidence of
the large impact these antipatterns have on the perfor-
mance of CPS. Specifically, we consider the following

five additional software performance antipatterns: (i)
Circuitous Treasure Hunt, i.e., requests that must look
in multiple places to find the needed information; (ii)
One Lane Bridge, i.e., requests running in parallel
that are temporarily restricted to execute sequentially;
(iii) More is Less, i.e., too many processes compet-
ing for computing resources; (iv) The Ramp, i.e., the
amount of resources required increasing over time;
(v) Traffic Jam, i.e., a burst of requests overload-
ing computing resources for a period of time. These
antipatterns are modeled with queuing network (QN)
performance models [15], since this formalism is well-
established in the SPE community and widely used to
analyze modern real-world applications, e.g., automo-
tive [16], unmanned aerial vehicle [17], IoT-enhanced
spaces [18], or Industry 4.0 [19].

The objective of our research is to support soft-
ware developers in understanding root causes of per-
formance degradation in CPS. To this end, we propose
a model-based approach that includes a variegate set
of performance models for software antipatterns. The
simulation-based analysis of these models provides
evidence on the impact of antipatterns, eventually
resulting in fluctuations and bottleneck switches in the
system performance. A network of sensors is used
to assess the usefulness of the proposed QN mod-
els in analyzing performance problems that emerge in
software development. The main contributions of this
manuscript can be summarized as follows:

• the specification of QN models expressing the
peculiarities of five additional software perfor-
mance antipatterns that are newly applied to the
CPS domain;

• the injection of eight software performance
antipatterns in a real-world system, and empiri-
cal evidence on their benefit for interpreting the
performance issues of CPS;

• the modeling of antipatterns using QN in the
context of CPS advances the software modeling
field since these models can be used to analyze
software performance quantitatively.

The rest of the manuscript is organized as follows.
Section 2 explains the connection between software
performance antipatterns and real-world CPS. Section
3 describes QNs that model the antipatterns and shows
their impact on the system performance. Section 4
assesses software performance antipatterns in a net-
work of continuously-monitored sensors, and experi-
mental results demonstrate the performance impact of
antipatterns on the system response time while vary-
ing the peculiar characteristics of these bad practices.
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Threats to validity are argued in Section 5. Section
6 briefly reviews related work. Concluding remarks
and future work are outlined in Section 7. All mod-
els, experiments, and replication data are publicly
available [20].

2 Antipatterns in CPS
The demand for developers with domain expertise
as well as expertise with the new CPS technology
exceeds the talent pool. This combination of new tech-
nology and lack of expertise dramatically increases
the risk of performance (and other) failures. Previ-
ous work contrasted characteristics of CPS of the past,
particularly Real Time Embedded Systems (RTES),
with today’s CPS to illustrate why CPS performance
problems are now occurring much more frequently
[12]. CPS performance antipatterns aim to solve these
performance challenges in today’s CPS.

By today’s CPS we mean systems showing dis-
tinguishing characteristics, as expressed in [12]. For
instance: (i) the dramatic increase in control variables
and automation of tasks is confirmed in [21] by means
of an open-source drone application; (ii) the usage of
complex and ambitious functions are acknowledged
by [22]; (iii) the need of managing large numbers
of processes that require communication and coor-
dination is studied in [23] through a smart traffic
application; (iv) the adoption of built-in functionalities
are investigated in [24] in the context of a smart city
scenario for safe crowd monitoring and control; (v) the
need for dynamic scheduling is analyzed in [25, 26].

In this section, we briefly describe the connec-
tion between software performance antipatterns and a
real-world CPS example, i.e., the Smart Parking Sys-
tem [27]. However, we also extend the discussion to
generic real-world CPS and we consider the character-
istics of these systems in connection with performance
antipatterns specification.

The Smart Parking System [27] consists of a server
orchestrating scanning and parking cars that collab-
orate to identify empty parking spots. We are inter-
ested in spotting probable issues in the response time
required to provide information (possibly image data
retrieved by scanning cars) to parking cars looking for
an empty spot. This scenario is indicative of generic
CPS where a set of physical entities need to interact
to acquire a resource of interest. There are several per-
formance antipatterns that could occur, and we discuss
these illustrative examples next.

For instance, the server may poll scanning cars to
check if new image data is available (i.e., Are We There
Yet? performance antipattern), and the polling interval
may cause performance problems. If the time interval
is too small, then the car is continuously interrupted,
the server is busy with overhead rather than real work,
and the overall system performance may suffer. If the
time interval is too long, the images may become stale
before the server acts on it. CPS may include physical
entities that are continuously interrupted when doing
their job, hence performance delays occur.

The Is Everything OK? performance antipattern
occurs if the server (too) frequently contacts all cars
to confirm that their cameras are functioning correctly.
This delays the retrieval of images and cars may have
an unexpected delay in receiving parking results. As
opposite, if cars initiate communication of camera
malfunctions, then fewer messages are exchanged and
this may be beneficial for the overall system perfor-
mance. The frequent check on the status of resources
in CPS may generate performance overhead.

The Where Was I? performance antipattern occurs
when the server does not remember previous parking
results and re-starts the image analysis. If instead the
server remembers “objects of interest” such as where
parking spots were available, it could first make a
quick check to see if it is still available. If the server
forgets previous results, then it wastes considerable
time recalculating and the overall system performance
suffers. Traditional CPS preserved state information
to prevent Where Was I? performance degradation.
Even then, restoring the state on startup has led to
excessively long boot times and thus a failure to meet
performance requirements.

The Circuitous Treasure Hunt performance
antipattern is related to the database design for fre-
quent access. A typical example is when the number
of available parking spaces in an area is frequently
needed. The Circuitous Treasure Hunt occurs when
the database design requires a “count” operation of the
raw data to calculate the number of available spaces.
It is even worse if images must be scanned to deter-
mine availability of spaces to be tallied. If instead the
database stores the number of spaces available in each
area, and updates that number as spaces are taken or
left the performance is greatly improved when that
number is requested. Traditional CPS seldom used
database technology, but newer technology has led
to increased use of databases. Accessing resources
in CPS is expensive, better to limit the number of
accesses.
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The One Lane Bridge antipattern is also related
to database design. When all cars concurrently send
images to the server, and the server appends the
images to the end of the database, all processes are
competing to write to the same location. However,
only one process may execute at a time, and the One
Lane Bridge limits parallelism. The performance can
be improved by first capturing the images to different
storage locations, then updating the database with that
location. This improves concurrency and shortens the
time to “cross the bridge” by only updating a location
in the single threaded section of code. Limiting con-
currency in CPS at a specific operational point may
degrade the system functionality.

The More is Less antipattern happens when too
many processes attempt to do computation in paral-
lel, and the associated overhead and contention delays
negatively impact performance. This could occur in
“smart” parking when it is necessary to update maps
of the parking areas. If all cars request updates of all
maps in parallel, the system will be overloaded with
too many parallel requests. If instead cars request a
few map updates at a time, perhaps by prioritizing the
update requests by the current location of the car, the
overall performance improves. Overwhelming concur-
rency in CPS may generate a system bottleneck in
managing an extraordinary number of requests.

The Ramp antipattern can occur because the infor-
mation on empty parking spots continuously evolves
as the system is used. Thus the complexity and execu-
tion time of requests processed by the server increase
with system operations. Data structures and algo-
rithms tailored to the maximum operational size could
help to avoid an increasing and unpredictable process-
ing time. The adoption of continuously increasing data
structures in CPS should be discouraged since their
management becomes too costly.

An example of the Traffic Jam antipattern occurs
when the system must refresh the database with the
status of all parking spots, either at start-up or after
an outage. If the system acquires all parking spot sta-
tus for all areas at the same time, the system will
be overloaded for a long period of time and will be
unable to respond to parking spot requests. If a phased
refresh can be implemented, perhaps prioritizing the
most important areas or the most likely to be needed
first, the load will be spread, performance and avail-
ability will improve. Physical entities in CPS should
act asynchronously to avoid a burst of large requests.
Processing for initialization and for re-boot should
spread the load so system availability is preserved.

3 Our Approach
CPS include real-time concerns and requirements that
are critical. To this end, we report the system response
time, i.e., the average time (i.e., the sum of waiting and
service time) taken by requests to be processed. This
performance index represents a key factor in our anal-
ysis since it provides knowledge on the timeliness of
these systems, i.e., the ability to produce the expected
result by a specific deadline. Designers can compare
the model-based performance analysis results with the
stated requirements, thus assessing real-time concerns
of CPS. We also analyze the utilization of resources
(i.e., the percentage of time that each resource is busy)
to identify which resource is the bottleneck of the
system and degrades the system performance.

It is worth remarking that system response time
and utilization of resources are used to monitor the
system performance. However, the specification of
performance antipatterns also includes bad practices
that are poor design choices leading to system mis-
behavior. As stated in [28], predictability is a key
factor of real-time systems, i.e., the timing behav-
ior of a system has to satisfy its specifications. Our
work contributes in the direction of introducing design
techniques that anticipate operational uncertainties. In
fact, the specification of antipatterns plays the crucial
role of expressing bad practices that may contribute to
errors in the timing behavior of systems.

In this section, we discuss how to model perfor-
mance antipatterns [11,12] using QNs [15]. It is worth
remarking that QNs represent an abstraction of the
software system under analysis. Our approach relies
on strategies that have been defined in the literature to
derive performance models from the software design
specification [29,30]. Hereafter, we describe our base-
line QN model that is represented by a simple and
abstract system with two resources, namely Resource1
and Resource2. Software performance antipatterns are
described by decorating the baseline model and we
evaluate their impact on the system performance using
Java Modelling Tools (JMT) [31] to simulate the pro-
posed QN models. All simulations in this section stop
when analyzed metrics are observed with 99% confi-
dence interval and 3% maximum relative error with
the exception of those showing the evolution of per-
formance indices over time, see Sections 3.8 and 3.9.
Simulations are stopped despite the relative error value
after 1M samples are collected, i.e., the maximum
number of analyzed samples is set to 1M.
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3.1 Baseline
3.1.1 Modeling

The effect of performance antipatterns on a system
is investigated using a single-class QN model with a
delay station and two queuing centers (i.e., Resource1
and Resource2), as shown in Fig. 1(a). Specifically, we
consider a batch (closed) system whose workload is
defined by the number of requests (Nreq) and a think
time (Zreq = 0 seconds). This is a common assump-
tion when modeling CPS (e.g., [19]). It does not limit
the generality of our approach since equivalent closed
QNs can be derived from open ones [32]. All requests
are first served by Resource1 and later processed by
Resource2 with two exponential distributions whose
average service time are Sreqres1 and Sreqres2, respectively.
A First Come First Served queuing strategy is used in
both stations.

The choice of using only two queuing centers as
the baseline model is to simplify the modeling of soft-
ware performance antipatterns and demonstrate their
impact. The choice of input model parameters also
follows this objective, and the numerical values are
reported in Fig. 1(b). We considerNreq = 10 requests,
Sreqres1 = 0.02, and Sreqres2 = 0.04, both service times
are expressed in seconds (sec). These values, as well
as others considered in Section 3, are consistent with
real-world CPS tasks [33] whose completion deadline
ranges from a few milliseconds to several seconds.
Fig. 1(b) shows also the performance indices (i.e.,
Rreqsys, Ures1, and Ures2) obtained analytically using
the mean value analysis (MVA) [15].

3.1.2 Analysis

Fig. 1(c) depicts the considered performance indices:
the system response time of requests (Rreqsys, blue
line with circular dots, left y-axis), the utilization
of Resource1 (Ures1, red line with triangular dots,
right y-axis), and the utilization of Resource2 (Ures2,
green line with squared dots, right y-axis). All the
performance indices are depicted with their 99% con-
fidence interval (i.e., shaded areas). These indices
are depicted against the service time of Resource2,
Sreqres2, that varies from 0 to 0.08, while the service
time of Resource1, Sreqres1, is set to 0.02. Resource1
is the system bottleneck when Sreqres2 < 0.02, oth-
erwise the system capacity is limited by Resource2,
see the utilization curves crossing in Fig. 1(c). Perfor-
mance indices observed for the baseline service time

of Resource2, Sreqres2 = 0.04, are indicated by a verti-
cal dashed line, i.e., Rreqsys = 0.4, Ures1 = 50%, and
Ures2 = 100%.

3.2 Are We There Yet?
3.2.1 Modeling

Requests that need computational power to check the
occurrence of an event are modeled by defining a new
request class (i.e., Check), as in Fig. 2(a). Specifically,
Nchk requests of the new Check class are initialized in
the system (i.e., one for each event that is monitored).
The time spent by a Check request in the delay sta-
tion and Resource1 is exponentially distributed with
average Zchk and Schk, respectively. The overhead for
checking is significant and requires many resources
[12], Schk ' Sreqres1. For the sake of simplicity and
without loss of generality, we assume that Resource2
is not affected by this software performance antipat-
tern. Therefore, Check requests do not visit Resource2
and they are routed back to the delay station after
being processed by Resource1.

3.2.2 Analysis

Numerical values used to analyze this antipattern are
shown in Fig. 2(b). We assume 250 requests are sent
to Resource1 to check if an event has occurred, i.e.,
Nchk = 250. Since checking for the occurrence of an
event is expensive, the service time of Check requests
is set to half the time required to execute default
requests (i.e., Schk = 0.01 seconds). We analyze
the system with 0 < Zchk < 10 seconds to
evaluate the effect of checking frequency. Results are
depicted in Fig. 2(c) whose x-axis is inverted to high-
light the effect of more frequent checking requests
(i.e., a shorter think time). As expected, the system
response time increases when the event occurrence is
checked more frequently (i.e., for small Zchk values).
Small Zchk values increase the usage of Resource1,
reduce the usage of Resource2, and make the request
execution slower. The baseline system response time
(i.e., Rreqsys = 0.4) is observed for Zchk > 5 seconds.
This is depicted by the dashed blue line and the blue
arrow pointing towards the direction whereRreqsys is not
longer than the baseline. For the sake of clarity, Zchk
values that allow observing the baseline utilization of
resources are not depicted in Fig. 2(c). Summariz-
ing, checking more frequently the occurrence of an
event generates performance overhead that increases
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Fig. 1: Baseline – Performance modeling and evaluation.
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Fig. 2: Are We There Yet? – Performance modeling and evaluation.

resource usage, prevents other resources from accom-
plishing their work, most likely switches the system
bottleneck, and slows down the overall computation.

3.3 Is Everything OK?
3.3.1 Modeling

This antipattern is modeled by adding a Check class to
the baseline, see Fig. 3(a). In this case, Check requests
are repeatedly invoked to verify the status of resources
(e.g., battery). Check requests visit only the affected
resource (i.e., Resource1) before being routed to the
delay station where they spend Zchk time units. The
cyclic invocation of these requests (i.e., the think time)
is modeled by a Uniform distribution with average
µ and a small range of values, i.e., µ · (1 ± 0.02).
Differently from [14] where a Deterministic distri-
bution modeled the cyclic nature of this antipattern,
here we use a Uniform distribution with a small coef-
ficient of variation (approximately 0.012) to better

represent the monitoring of system components with-
out hard real-time performance requirements. There
areNchk Check requests in the system, each one mon-
itoring the status of the resource. The time needed to
verify the component status, Schk, is assumed to be
much smaller than the time required to process default
requests, i.e., Schk � Sreqres1.

3.3.2 Analysis

Numerical values used to analyze this antipattern are
shown in Fig. 3(b). The number of components whose
status is repeatedly checked is set to Nchk = 250.
A status check (the Is everything OK? antipattern)
requires fewer resources than requests generated by
the Are We There Yet? antipattern since only the sta-
tus of the checked component needs to be returned.
Hence, Schk is assumed to be one order of magnitude
smaller than the previous case (i.e., Schk = 0.001
seconds). The system performance is studied against
Zchk and shown in Fig. 3(c) where the x-axis is
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Fig. 3: Is Everything OK? – Performance modeling and evaluation.

inverted to highlight the effect of the antipattern. Due
to the similarity of this antipattern with the previous
one [12], the performance indices observed in the two
cases show similar behaviors. Since monitoring the
status of a component is a fast task, the baseline sys-
tem response time (i.e., Rreqsys = 0.4) is observed for
Zchk > 0.5 seconds, i.e., much shorter than the one
observed for Are We There Yet? (Zchk > 5 seconds).
This is depicted by the dashed blue line and the blue
arrow pointing towards the direction whereRreqsys is not
longer than the baseline. For the sake of clarity, Zchk
values that allow observing the baseline utilization of
resources are not depicted in Fig. 3(c). Summing up,
Is Everything OK? and Are We There Yet? antipatterns
show similar performance variations (i.e., switching
the system bottleneck and increasing/decreasing the
utilization of resources). In this case, the performance
overhead is due to the high checking frequency rather
than the checking activity itself.

3.4 Where Was I?
3.4.1 Modeling

A process that loses its state must resume the exe-
cution from a previous checkpoint. This is modeled
by increasing the service time of the process at the
station affected by the antipattern. Assuming that
this performance antipattern affects only Resource1,
recomputing the lost state takes ∆ time units on aver-
age that are added to the service time of the resource,
i.e., Sreqres1 + ∆, as shown in Fig. 4(a). State recalcula-
tion might be a short activity, i.e., the value of ∆ may
be small. However, there are cases (e.g., connectivity
issues) that require extensive processing to recalculate
the state [12].

3.4.2 Analysis

Numerical values used to analyze this antipattern are
shown in Fig. 4(b). Here we assume a value ∆ that
is added to the original service time of the affected
resource (i.e., Resource1) to model the extra process-
ing time required to recalculate the lost state. We
consider 0 ≤ ∆ ≤ 0.18 seconds and evaluate the
system performance against these values. Results are
shown in Fig. 4(c). If ∆ = 0 seconds the antipat-
tern has no effect on the system and we observe the
baseline performance (i.e., response time and utiliza-
tion) discussed in Section 3.1. In Fig. 4(c), this is
depicted by the dashed black line. Summing up, if
recalculating the lost state is more expensive than the
actual computation, the performance of the system
deteriorates and the system bottleneck may switch.
The system response time increases when requests
served by Resource1 need to recalculate their state
(i.e., Sreqres1 + ∆) due to the Where Was I? antipat-
tern. Resource1 is the bottleneck of the system when
∆ > Sreqres2 − Sreqres1, i.e., restoring the state requires
extensive processing.

3.5 Circuitous Treasure Hunt
3.5.1 Modeling

This antipattern increases the number of visits
required to satisfy a request, e.g., multiple retrievals
from a database are required before obtaining the
desired information [11]. The model represents this
increase by specifying a probability that a request will
visit a resource again. This worsens the system perfor-
mance by making the service demand (i.e., the product
of service time and visits) of affected resources longer.
In Fig. 5(a), this bad practice is modeled by changing
the probability p (i.e., 0 ≤ p < 1) to visit Resource1
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Fig. 4: Where Was I? – Performance modeling and evaluation.
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Fig. 5: Circuitous Treasure Hunt – Performance modeling and evaluation.

again. The higher the value of p the greater the number
of visits to the station.

3.5.2 Analysis

Numerical values used to analyze this antipattern are
shown in Fig. 5(b). To investigate the effect of this
software antipattern on the system performance, we
vary the probability of requests to visit Resource1,
i.e., 0 ≤ p < 1. As depicted in Fig. 5(c), high val-
ues of p increase the number of visits to Resource1,
switch the system bottleneck (i.e., from Resource2
to Resource1), and make the system response time
longer. Resource2 is the bottleneck of the system only
if p = 0 (i.e., the baseline). The baseline perfor-
mance (i.e., response time and utilization) presented
in Section 3.1 is observed for p = 0. In Fig. 5(c), this
is depicted by the dashed black line. Summarizing,
increasing the number of visits to one of the resources
makes the response time longer since requests spend
more time in the system.

3.6 One Lane Bridge

3.6.1 Modeling

Single-threaded programs can serve only one pro-
cess at a time regardless of the available resources. A
finite capacity region (i.e., FCR) is used to model the
One Lane Bridge antipattern and limit the number of
requests that are concurrently processed by resources.
Fig. 6(a) depicts this QN model assuming that only
Resource1 is affected by the software antipattern. In
this case, both Resource1 and Resource2 have multiple
CPUs, but the FCR only limits Resource1.

3.6.2 Analysis

Numerical values used to analyze this antipattern
are shown in Fig. 6(b). This performance antipattern
is studied by changing the baseline and specifying
quantity 10 (processing units) for all resources (i.e.,
Resource1 and Resource2). The computational capac-
ity of Resource1 (i.e., the resource affected by the
antipattern) is reduced to 1 using a finite capac-
ity region. This way, Resource1 can serve only one
request at a time even if it has ten processing units,
thus limiting its degree of parallelism. The effect of
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Fig. 6: One Lane Bridge – Performance modeling and evaluation.

One Lane Bridge is analyzed against the number of
requests in the system, Nreq, and plotted in Fig. 6(c).
The shortest system response time is observed when
Nreq = 1. In this case, the antipattern (i.e., FCR =
1) does not slow down the execution of the request,
and Resource2 is the bottleneck of the system. Since
resources might have more processing units than the
number of requests in the system, the utilization of
Resource1 and Resource2 is normalized over Nreq.
When Nreq > 1, requests must take turn to be served
by Resource1 since it can process only a request at a
time due to the One Lane Bridge antipattern. No Nreq
values allow observing the baseline performance since
the number of CPUs allocated to each resource has
been increased to model this antipattern. Overall, lim-
iting the computational capacity of resources worsens
the system performance when the number of requests
to be served increases.

3.7 More Is Less
3.7.1 Modeling

Multiple requests might be sent together to be pro-
cessed in parallel with the intent to reduce overall
response time for handling all requests. Resources that
must handle these requests in parallel observe a load
surge (due to requests arriving simultaneously) that
negatively impacts the system performance. As shown
in Fig. 7(a), we model this antipattern by placing the
affected resource (i.e., Resource1) between a Fork and
a Join. All Nfork requests spend Sreqres1(Nfork) time
units at Resource1 to be processed. We assume that
Sreqres1 depends on the number of parallel requests due
to possible overheads. When all Nfork requests are
served by Resource1, they are joined together and sent

to Resource2 that handles the result of all requests in
Sreqres2 time units.

3.7.2 Analysis

Numerical values used to analyze this antipattern are
shown in Fig. 7(b). The effect of this antipattern on
the system performance is observed by increasing the
number of parallel requests (i.e., Nfork). In this case,
there is a single request into the system (i.e., Nreq =
1) that is forked into 1 ≤ Nfork ≤ 20 sub-requests
before being processed by Resource1. We assume that
the service time of Resource1 increases by 10% for
every sub-request (except the first one) forked from
the initial request and is defined as:

Sreqres1(Nfork) = Sreqres1(1) ·
(

1 +
Nfork − 1

10

)
, (1)

with Sreqres1(1) = 0.02 (i.e., as in the baseline config-
uration, see Section 3.1). Fig. 7(c) depicts the system
performance as a function of Nfork. The system
response time keeps increasing since it accounts for
the average time spent by a request at Resource1 and
Resource2 (including the waiting time at the Join sta-
tion for all sub-requests being served by Resource1).
Resource1 is the system bottleneck when Nfork >
1; its utilization keeps increasing. The utilization of
Resource2 is smaller when Nfork increases since
it processes a single request, i.e., all sub-requests
together. The baseline system response time (i.e.,
Rreqsys = 0.4) is observed for Nfork < 10. This
is depicted by the dashed blue line and the blue
arrow pointing towards the direction where Rreqsys is
not longer than the baseline. In this case, the system
response time might be even shorter than the baseline
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Fig. 7: More Is Less – Performance modeling and evaluation.

value since Nreq is now set to 1 to model this antipat-
tern. For the sake of clarity, Nfork values that allow
observing the baseline utilization of resources are not
depicted in Fig. 7(c).

3.8 The Ramp
3.8.1 Modeling

The processing time of a request might increase over
time due to software operations that accumulate (an
increasing) overhead while the system is in operation.
In Fig. 8(a), this bad practice is modeled by defining
(for the affected resource, i.e., Resource1) a class-
dependent service time, Sreqres1(cl), and using a class-
switch component that changes the class of requests
visiting it. When the class of a request changes, its
service time at Resource1 increases.

3.8.2 Analysis

Numerical values used to analyze this antipattern are
shown in Fig. 8(b). Differently from other software
antipatterns, here we need to consider the evolution
of the system over time to observe the impact of
this antipattern on the baseline performance. Assum-
ing that The Ramp antipattern affects only Resource1,
the service time of this resource depends on the class
(i.e., cl) of the served request as shown in Fig. 8(b).
Specifically, requests that visit the class-switch (CS)
change their class with a 0.01% probability. Fig. 8(c)
depicts the evolution of the response time of the base-
line system (flat line) and of the system affected by
The Ramp antipattern (sloped line) over a pre-defined
time interval (i.e., 3 days). All values are obtained
by averaging the system response time from 50K
observations. Although the effect of The Ramp on the

system performance is barely visible after a few hours,
the system response time keeps increasing and, after
only a day, it is almost 50% longer compared to the
baseline. After three days, the system affected by The
Ramp takes 125% longer than the baseline system to
process incoming requests.

3.9 Traffic Jam
3.9.1 Modeling

Periodic load variations may deteriorate the perfor-
mance of a system that cannot always provide enough
computational power to process all the incoming
requests. In Fig. 9(a), the Traffic Jam antipattern is
modeled by introducing a new class of requests (i.e.,
Check) with a long and Uniform think time whose
average is µ and possible values range between 0.98·µ
and 1.02 · µ. This way, we model a scheduled peri-
odic event that needs a large amount of time Schk �
Sreqres2 to be processed by the affected resource, i.e.,
Resource2 in this case. This model allows studying a
system that requires an increased amount of resources
for a limited time due to a load that alternates between
phases (e.g., light and heavy loads).

3.9.2 Analysis

Numerical values used to analyze this antipattern are
shown in Fig. 9(b). The performance effect of this
antipattern is studied by considering the evolution of
performance metrics over time. There is Nchk = 1
Check request representing the Traffic Jam antipattern
in the system. This request is executed once every hour
on average, i.e., Zchk ∼ Unif(3528, 3672) seconds,
with service time set to 100 seconds at Resource2
(Schk = 100 seconds). All values depicted in Fig. 9(c)
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Fig. 8: The Ramp – Performance modeling and evaluation.
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Fig. 9: Traffic Jam – Performance modeling and evaluation.

are obtained by averaging the system response time of
20K samples. The response time of the baseline sys-
tem and the one affected by Traffic Jam are observed
over a pre-defined time (i.e., 8 hours). If a Check
request is introduced into the system, Resource2 needs
a long time to handle it, other requests must wait for
their turn to be processed, and their system response
time increases up to 25% compared to the baseline.
When the Check request is in the Delay station as
shown in Fig. 9(a), Resource2 serves other requests,
the increased traffic is assimilated, and the system
response time goes back to the baseline value.

3.10 Lessons Learned
The modeling of software performance antipatterns
using QNs is a challenging task due to the need of
introducing multiple and different components (e.g.,
finite capacity region, fork and join, class-switch)
that are required for capturing all the performance
problems that may originate. However, each antipat-
tern model includes a set of system peculiarities

that, despite the required (nontrivial) modeling effort,
nicely represent probable bad practices that become
actual performance problems. Moreover, QNs enable
a sensitivity analysis of considered systems and allow
drawing quantitative observations about the effect of
antipatterns on the system performance.

The outcome of modeling and analyzing perfor-
mance antipatterns raises the following main obser-
vations for generic CPS. Checking the occurrence of
specific events in the systems might delay other oper-
ations, and the frequency of performing these checks
becomes fundamental to avoid performance issues.
Verifying the status of system resources too often is
counter-productive since the system might spend too
much time performing this verification. Restoring the
state of a resource is not always beneficial due to the
performance overhead that might prevent other opera-
tions from being processed. Accessing a resource too
many times causes excessive use of the resource, it
is recommended to limit the accesses to the resource.
Parallel computation of system operations is benefi-
cial as long as there are enough processors so there is
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minimal resource contention. A continuing increase in
data size may lead to infinite response times. A sudden
burst of requests might generate delays that remain in
the system for a long time before going back to normal
processing of incoming requests.

It is worth remarking that these considerations for
generic CPS do lead to quantitative information. In
fact, our model-based analysis results show the varia-
tion of performance indicators (e.g., system response
time, resource utilization) while varying the specifici-
ties of CPS, such as the frequency of checking the
status of sensors. Section 4.5 discusses the percentage
of performance degradation we found in a concrete
case study under analysis.

4 Evaluation
The analyzed system is a SensorNet CPS [7] consist-
ing of a controller, a database, and sensors. It is based
on an actual CPS, but it is an abstract version that hides
confidential details. Additionally, system details have
been modified to inject all the antipatterns considered
here. This is necessary because one seldom finds all
of the antipatterns present in a single system, whereas
we want to illustrate how they can be modeled and
analyzed separately and together. The specific antipat-
terns we inject have been found in other CPS, just not
combined in this way. This approach serves as a refer-
ence case to show how the antipattern models can be
used in a plug and play manner.

4.1 Case Study Description
This CPS uses sensors to acquire data that are ana-
lyzed by the controller and might trigger some actions
(e.g., store the observed data in the database, issue
control commands, check if the system is properly
working).

The network of sensors acquire data at different
rates, so the system polls to see if new data is avail-
able (ie., Are We There Yet? performance antipattern).
When sensor data is received, the next step analyzes
the data and the required analysis time increases as the
system operates (ie., The Ramp performance antipat-
tern). This happens when previous sensor values need
to be compared to current values and an inappropriate
data structure is used that takes longer to access pre-
vious values as the number of values increases (e.g., a
sequential search of previous values). The Where Was
I? performance antipattern is also represented in the
analysis step by assuming that the analysis needs to

start from the beginning each time, and specifying a
service time that accounts for this re-calculation.

Sensor values and analysis results are stored in
a database. Incoming data is buffered, so when a
buffer fills it is written to the database. Data in the
database may be needed in the analysis. Two antipat-
terns are associated with database accesses: the One
Lane Bridge may occur when a process must lock the
database before updating, and the Circuitous Treasure
Hunt may occur when multiple database accesses are
needed to retrieve the data.

Once the data is captured and analyzed, a set of
Actors use the results to make control decisions and
issue commands that cause actions to occur in the
environment. There are no antipatterns represented
by the Actors in this system, but they are represen-
tative of CPS that trigger actions based on sensor
values, and they introduce contention for resources
that demonstrates the effect of the considered software
antipatterns. This illustrates how performance prob-
lems can propagate to unrelated processing in a system
containing performance antipatterns.

Resilience is represented in this CPS by period-
ically executing virus scans. While traditional CPS
(e.g., RTES) do not address cyberthreats, systems of
today are increasingly vulnerable, as evidenced by
the Stuxnet penetration of the Iranian nuclear power
plant [34] and the HVAC penetration into a hospital
information system [35]. So we consider the perfor-
mance affect of adding a virus scan that also represents
the Traffic Jam performance antipattern. Note that
Garbage Collection is another type of Traffic Jam that
never occurred in traditional CPS, but now also occurs
in today’s systems. Our case study focuses on the for-
mer to illustrate how this performance antipattern can
be represented, and thus how additional Traffic Jam
can be represented when they are present. In our case
study, we focus on the performance aspects leaving
aside the power constraints on edge devices, such as
the sensors, that would make this type of virus scan
impractical. We acknowledge this assumption may not
apply to all CPS.

The Is Everything OK? performance antipattern is
represented in this CPS by periodically checking if
the sensors are functioning correctly. The performance
effect is studied by varying the frequency of the status
checks.

The More is Less performance antipattern is rep-
resented by using Fork and Join to parallelize the data
retrieval and analysis that finds “objects of interest”
(OOI) in the data provided by sensors.
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The resulting system with all the performance
antipatterns injected is somewhat contrived because it
is rare to find all of these in one system. Nevertheless,
in our combined experience, all but two of these exam-
ples of performance antipatterns have been found in
other CPS, they just have not all been found together.
The two exceptions are the database related antipat-
terns, but those are common antipatterns in database
systems in general and as databases become more
commonplace in CPS, and they are, it is only a matter
of time until those antipatterns occur.

The resulting models illustrate how one or more of
these performance antipatterns might be combined in
other realistic CPS. The parameters used in the models
in the next section (Table 1) are realistic values based
on our experience with similar systems, yet adapted
somewhat to this example to illustrate the combination
of performance antipatterns.

4.2 Modeling
The CPS under analysis is modeled using a multi-class
QN, i.e., the same formalism adopted to define the
software performance antipatterns in Section 3. There
are three resources, i.e., the Controller that is modeled
as a queuing center with two CPUs and a First Come
First Served policy, Sensors, and DB, both represented
as a station with infinite servers (hence without any
queue). The Delay center is used to drive the arrival
of new requests. There are five classes of requests
in the system, i.e., PollingAnalysis, VirusScan, Sta-
tus, FindOOI, and Actors, whose interactions with the
resources of the CPS are depicted in Figs. 10(a)–(e).
Although these classes are depicted separately for the
sake of clarity, they coexist in the system and com-
pete for the available resources interfering with each
other. Request classes used to investigate the effect of
software antipatterns on the system performance are
discussed in the following. Input parameters used to
define the baseline system are shown in Table 1.
PollingAnalysis. This class represents data being
polled from the sensors, analyzed by the controller,
and stored in the database. There are NPoAn requests
of this class and each one spends ZPoAn time units
in the Delay. The delay represents the frequency of
PollingAnalysis requests and is used to study the
Are We There Yet? antipattern. These requests are
then sent to the Controller where they are processed
in SPoAnctrl (c) time units. This time increases with
the value of c, i.e., the sub-class of PollingAnalysis
requests. This way, we can evaluate the effect of The

Ramp antipattern on the system performance. When
c is fixed, we vary the value of SPoAnctrl to quantify
the effect of the Where Was I? antipattern. After hav-
ing been processed by the Controller, PollingAnalysis
requests are sent to the Sensors with probability p1.
Here, they spend SPoAnsensors time units to acquire data.
With probability p2, requests go to the DB where they
store information in SPoAndb time units. In all other
cases, the requests have already polled and analyzed
data, hence they go back to the Delay station to restart
the process. Before reaching the Delay, there is a
probability α that the request goes through the class-
switch CS and its sub-class c is changed. The number
of PollingAnalysis requests concurrently processed by
the database is limited by the size of the FCR (requests
that find the FCR busy must wait outside the region
for their turn). This way, we limit the capacity of the
DB and investigate the effect of the One Lane Bridge
antipattern when NPoAn changes. The FCR affects
only PollingAnalysis requests, i.e., requests of a differ-
ent class enter the DB as soon as they are completed
by the Controller. When PollingAnalysis requests are
processed by the DB, there is a probability q that they
need to visit the DB again before being processed by
another resource. The value of q is used to analyze the
Circuitous Treasure Hunt antipattern.
VirusScan. This class visits the DB with probability
p2 to retrieve the latest virus definitions then scans
Sensors with probability p1 to check that no virus
is affecting them. Results are always reported to the
Controller. The time required by these requests at
the Controller, Sensors, and DB (i.e., SV irusScanctrl ,
SV irusScansensors , and SV irusScandb , respectively) are longer
than the service time of all other request classes to
represent the impact of the Traffic Jam antipattern
on system performance. For model validation, we set
ZV irusScan to approximately 0 seconds to represent
only the busy period when the virus scan is active,
and to obtain sufficient completions for model pre-
cision. The variation of ZV irusScan is discussed in
Section 4.4 where experiments show the performance
evolution of the Traffic Jam antipattern.
Status. These are requests issued by the system to
check that Sensors are working as expected. There
are NStatus requests that spend ZStatus time units in
the Delay station. Changing the think time of Status
requests allows investigating the effect of the Is Every-
thing OK? antipattern on the system performance.
Status requests are then served by the Controller in
SStatusctrl time units. With probability p, they must
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Table 1: Parameters of the CPS used to validate the QN model and evaluate the effect of performance antipatterns.
Time values (inspired by real-world CPS tasks [33]) are in milliseconds (msec) and follow an Exponential distri-
bution with the given mean value (unless differently indicated). The max value of p, p1, p2, q, and α is 1.

Class Fig. N Z Sctrl Sdb Ssensors Nfork FCR p p1 p2 q α
PollingAnalysis 10(a) 10 75 0.30067 0.6 0.1 – 1 – 11/15 3/15 0 0.0001

VirusScan 10(b) 1 Unif
(
0.98 · 10−14 , 1.02 · 10−13

)
2048.78 0.6 1000 – – – 20/41 20/41 – –

Status 10(c) 1 Unif(0.098, 0.102) 0.05 – 1 – – 0.5 – – – –
FindOOI 10(d) 1 1000 1.2155 0.6 – 10 – 0.5 – – – –
Actors 10(e) 5 30 0.72 0.6 – – – 2/3 – – – –
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Fig. 10: QN used to study the CPS presented in [7]. Different workloads coexist in the same model and interfere
with each other even if they are presented separately for the sake of clarity.

check the status of Sensors (i.e., SStatussensors), whereas
with probability 1 − p they have already reported
the status to the controller and go back to the Delay
station.
FindOOI. This class represents requests that find
OOI: they alternate processing at the Controller, and
retrieving data from the DB. These requests intro-
duce the More Is Less antipattern by using Fork
and Join to parallelize the data retrieval and anal-
ysis. The Controller service time of each forked
sub-request depends on Nfork as in Eq. (1). The ser-
vice time (when only one sub-request is forked) is
SFindOOIctrl (1) = 0.639737 msec and the service time
with Nfork = 10 (see Table 1) is:

SFindOOIctrl (10) = SFindOOIctrl (1) ·
(

1 +
10− 1

10

)
= 0.639737 msec · (1 + 0.9)

= 1.2155 msec.

When a forked sub-request is completed (with
probability 1 − p), it waits in the Join station for
all other forked sub-requests to retrieve the required
data before being joined into the original request and
returning to the Delay station.
Actors. This class models requests that need to use
Controller and DB for their execution. As stated ear-
lier, it is not meant to inject software antipatterns
into the system, but it increases the contention for
resources and emphasizes the effect of the considered
software antipatterns.

4.3 Model-based Comparison of Analysis
Results

The baseline QN model proposed in Section 4.2 is
verified against an extended version of the execu-
tion graph (EG) model originally proposed in [14].
The EG model is solved with SPE·ED [5], i.e., a
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Table 2: EG and QN results. The 99% confidence interval of JMT simulations is shown in parenthesis. Mean
absolute percentage errors (MAPEs) are computed wrt. average values.

Class System Response Time System Throughput Controller Utilization
EG [msec] QN [msec] MAPE [%] EG [req/sec] QN [req/sec] MAPE [%] EG [%] QN [%] MAPE [%]

PollingAnalysis 17.700 18.374 (± 0.376) 3.808 107.782 107.096 (± 0.431) 0.636 23.86 24.23 (± 0.71) 3.539
VirusScan 98,091.900 101,365.617 (± 2,746.938) 5.527 0.010 0.010 (± 0.000) 0.000 40.79 40.57 (± 1.08) 0.542

Status 2.000 1.949 (± 0.050) 2.550 469.872 487.997 (± 11.843) 3.857 2.34 2.43 (± 0.05) 3.539
FindOOI 33.500 31.976 (± 0.815) 4.549 0.959 0.969 (± 0.001) 1.043 1.16 1.18 (± 0.03) 1.356
Actors 6.100 5.912 (± 0.148) 3.082 138,564 139.231 (± 0.574) 0.481 14.96 15.04 (± 0.33) 0.525

tool designed to support SPE methods and mod-
els, that returns performance analysis results. Each
request class described in Section 4.2 is modeled by
a SPE·ED scenario derived from a sequence diagram.
It is possible to generate EGs from sequence diagrams
by following the flow of messages through the per-
formance scenario and representing actions as basic
nodes in the EG. For instance, Fig. 11 shows the
sequence diagram of the PollingAnalysis class, and
Fig. 12 depicts the most performance-wise relevant
actions from the PollingAnalysis sequence diagram.
Table 2 reports performance measures (i.e., system
response time, system throughput, and controller uti-
lization) obtained by simulating the EG model with
SPE·ED and the QN model with JMT. All simulations
(except those showing the evolution of performance
indices over time, see Sections 4.4.7 and 4.4.8) in this
section stop when every analyzed metric is observed
with 99% confidence interval and 3% maximum rela-
tive error. Simulations are stopped despite the relative
error values when 100M samples are collected, i.e.,
the maximum number of samples to analyze is set
to 100M. The mean absolute percentage error (i.e.,
MAPE) made by the QN when compared to the EG
is also reported in Table 2. Specifically, the MAPE is
computed as:

MAPE [%] =
|MEG −MQN |

MEG
· 100,

where MEG is the measure obtained from the EG,
MQN is the measure obtained from the QN, and the
result is multiplied times 100 to give a percentage
error. Observed MAPEs are never larger than 6%,
meaning that the QN model discussed in Section 4.2
is a faithful representation of the extended CPS used
in [14]. This strengthens the adoption of QNs as a
valid modeling notation to predict the performance of
real-world systems.

Sensor Analytics aes filter DBServer latency
Timer

arrival?()

start()

read Message

read Message0 aes encrypt()

aes encrypt()

insert()

doFilter()

doFilter()

lookup Message

lookup Message0

aes decrypt()

aes decrypt()

refreshState()

predict()

aes encrypt()

aes encrypt()
insert()

stop()

loop

Fig. 11: Sequence diagram of PollingAnalysis sce-
nario [14].

Process

Reading

Refresh

State
Predict

Post

Result

Fig. 12: Steps in the PollingAnalysis sequence dia-
gram [14].

4.4 Antipattern Experiments
Figs. 13–20 show the effect of the analyzed software
antipatterns on the system response time and con-
troller utilization of the considered CPS. For antipat-
terns associated with the evolution of the system per-
formance (i.e., The Ramp and Traffic Jam, see Section
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3), only the system response time is shown since it
is derived from simulation logs. The baseline per-
formance used to verify the QN model of the CPS
in Section 4.3 is indicated by a dotted vertical line.
Figures depicting utilization show the overall Con-
troller utilization, the Controller utilization of each
class, and the DB utilization for the PollingAnalysis
class (i.e., the only class for which the DB is not mod-
eled by an infinite server station due to the Finite
Capacity Region).

4.4.1 Are We There Yet?
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Fig. 13: Are We There Yet?

This software antipattern is injected into the
CPS by decreasing the time between two consec-
utive PollingAnalysis requests, i.e., changing the
ZPoAn value. Consistently with what is observed
in Section 3.2, Fig. 13(a) (note the inverted x-
axis) shows that as the frequency of PollingAnalysis
requests increases (i.e., the smaller isZPoAn), the time
required to process all requests increases exponen-
tially. Fig. 13(b) (that also shows an inverted x-axis)
depicts the Controller utilization whose trend follows
that of the PollingAnalysis class. The Controller and
DB usages decrease when ZPoAn increases due to
the longer time spent by PollingAnalysis requests in

the Delay station. The Controller utilization of other
classes is not affected by ZPoAn.

4.4.2 Is Everything OK?
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Fig. 14: Is Everything OK?

The effect of this performance antipattern is stud-
ied by varying the frequency of status checks, i.e.,
changing the ZStatus value. To better highlight it,
NStatus (i.e., the number of Status requests) is set to
20. In this case, no dotted line is depicted in Figs. 14(a)
and 14(b) since the baseline performance is obtained
with NStatus = 1. Considering the system response
time in Fig. 14(a) (note the inverted x-axis), Is Every-
thing OK? mainly affects the PollingAnalysis class,
and light effects are also observed for Actors and Find-
OOI classes. When the status of system components
is checked too frequently, all requests compete with
Status for Controller resources. Looking at the uti-
lization of the Controller in Fig. 14(b) (its x-axis is
also inverted), the curve for the Status class shows
the largest variation since requests of this class spend
more time in the Controller whenZStatus is short. The
overall Controller utilization decreases when ZStatus
increases; this improves the performance of all system
classes.
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4.4.3 Where Was I?
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Fig. 15: Where Was I?

This antipattern is injected by increasing the time
spent by PollingAnalysis requests in the Controller.
Figs. 15(a) and 15(b) show that both the system
response time and the Controller utilization of the
PollingAnalysis class increase with SPoAnctrl due to the
longer time spent by these requests in the Controller,
while the DB utilization of the PollingAnalysis class
decreases. As a consequence, the system response
time of other classes also increases with SPoAnctrl .

4.4.4 Circuitous Treasure Hunt

To analyze this performance antipattern, we change
the probability q that PollingAnalysis requests visit
the DB. Its effect is visible on the system response
time of PollingAnalysis requests, see Fig. 16(a); it
is longer when there is a high probability that these
requests visit the DB multiple times. The effect on the
Controller utilization, Fig. 16(b), is almost negligi-
ble since the antipattern overhead is on the DB whose
utilization increases with q and becomes the system
bottleneck for large values of q.
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Fig. 16: Circuitous Treasure Hunt

4.4.5 One Lane Bridge

As described in Section 3.6, the effect of this antipat-
tern is observed by increasing the number of requests.
Here, we change NPoAn, i.e., the number of Polling-
Analysis requests. The larger the load intensity (i.e.,
NPoAn), the longer the system response time of all
classes in the system, see Fig. 17(a), due to the
increased resource contention at the Controller. As
expected, the Controller and DB usages also increase
due to the larger number of PollingAnalysis requests,
see Fig. 17(b). The Controller utilization of other
classes is barely affected by this antipattern.

4.4.6 More Is Less

This antipattern is studied against the number of
sub-requests (i.e., Nfork) forked from the FindOOI
request (see Table 1). Only FindOOI requests are
affected by More Is Less; Fig. 18(a) shows longer
system response times when Nfork increases. The
increased system response time of FindOOI requests
is due to the time spent by the forked sub-requests at
the Join station waiting for the completion of all other
sub-requests. This is visible from Fig. 18(b) which
shows that the Controller utilization does not change
with Nfork. This illustrates the performance effect of
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Fig. 17: One Lane Bridge

the guilty More Is Less antipattern when the number of
forked sub-requests exceeds the number of processors.

4.4.7 The Ramp

The effect of this antipattern is observable when the
evolution of the system performance is analyzed over
time. Fig. 19 shows the system response time of
the five classes within a 4-hour interval. All classes
(except VirusScan) show an increasing trend dur-
ing the observation period due to the service time
of PollingAnalysis requests (i.e., the class on which
The Ramp has the greatest impact) at the Controller
(SPoAnctrl ) which might become 10% longer when these
requests go through the class-switch, see Section 4.2.
The system response time of VirusScan requests is
not affected much by this antipattern since it is four
orders of magnitude longer than the response time
of PollingAnalysis requests. Results shown in Fig. 19
are obtained by averaging the system response time
observed for all the requests of the same class.

4.4.8 Traffic Jam

The VirusScan request (i.e., NV irusScan = 1) is used
to inject this antipattern into the system. To highlight
the impact of Traffic Jam, differently from the value in
Table 1, the think time of VirusScan is ZV irusScan ∼
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Fig. 18: More Is Less
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Fig. 19: The Ramp – Response time

Unif(3528, 3672) seconds. This way, the system is
scanned for viruses once per hour on average. The
effect of the antipattern is presented in Fig. 20 where
the system response time of FindOOI, PollingAnal-
ysis, and Actors requests increases when VirusScan
checks the system for viruses. The effect of Traffic Jam
on the system response time of the Status class is neg-
ligible due to the short service time of this class at the
Controller. For the sake of clarity, the system response
time of the VirusScan request is not depicted in Fig. 20
since this class is used to inject the Traffic Jam in the
system and the antipattern has no effect on it.
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Fig. 20: Traffic Jam – Response time

4.5 Lessons Learned
Our experimentation shows the following main find-
ings. When the SensorNet checks too often if sensors
polled new data (Are We There Yet?), the response
time of PollingAnalysis degrades by 151%. Frequently
checking the status of sensors (Is Everything OK?)
delays other system operations, e.g., the response time
of PollingAnalysis deteriorates by 50%. If the Sen-
sorNet recalculates the lost state (Where Was I?),
the response time of PollingAnalysis increases up to
398%. Repeatedly accessing the database (Circuitous
Treasure Hunt) worsens the response time of Polling-
Analysis up to 180%. Limiting the concurrency when
accessing to the database (One Lane Bridge) delays
PollingAnalysis requests by 638%. A large number of
batched requests (More Is Less) increases by 4208%
the response time of FindOOI requests. If size of data
stored in the database increases over time (The Ramp),
other operations that need to access the database,
e.g., PollingAnalysis requests, take longer, e.g., up to
1870%. Checking the presence of viruses at a spe-
cific point in time for all sensors (Traffic Jam) clogs
the system, e.g., FindOOI requests experience delays
up to 29%. The Controller utilization increases for
most of the antipatterns, and the maximum growth of
40% is observed for the One Lane Bridge. Overall,
the performance degradation is significant and perfor-
mance antipatterns nicely capture the root causes of
such deterioration.

Summarizing, we conclude that generic CPS do
show several bad practices leading to performance
issues. For instance, checking too often the status of
system events leads to performance degradation. If
an internal routine is in charge of verifying the func-
tioning of resources, and the verification is executed
too frequently, system requests are inevitably delayed.
When processes do not remember state information,

it might be necessary to look for current informa-
tion. This increases computation which then increases
resource utilization and response time. Further bad
practices are: excessive access to the database, lim-
iting the concurrency, allowing a large number of
batched requests, establishing time synchronization
among operations executed by physical entities, and
ever-increasing size of data structures.

The benefit of our model-based analysis is the
quantification of performance degradation. This way,
designers can verify if system performance require-
ments are satisfied. Our antipattern models also allow
relating detected problems to their root causes. This
way, designers can refactor the software using reme-
dies prescribed for antipatterns. More importantly,
refactored systems can be analyzed to check if they
meet the stated requirements.

5 Threats to Validity
Besides inheriting all limitations of the underlying
software performance engineering research [36], our
approach exhibits the following main threats to valid-
ity [37].

Construct threats relate to the validity of met-
rics used during our experimentation. To smooth these
types of threats, all simulations undergo a 99% con-
fidence interval, so the accuracy of the presented
experimental results has been monitored.

Conclusion threats deal with the reliability of col-
lected measures. To smooth these threats, the model-
based performance analysis is delegated to two well-
assessed and widely-used tools for this scope, i.e.,
JMT [31] and SPE·ED [5].

Internal threats are related to how we designed
our experiments. Queuing models include a set of
input parameters whose numerical value may largely
influence the observed fluctuations in the system per-
formance. To smooth this type of threat, we provide
the models as part of our replication data, and users
can set their own numerical values, so that additional
parameter values can be analyzed. QNs represent an
abstraction of the software system under analysis, we
acknowledge that the connection to the actual system
design and implementation, as well as the quantita-
tive validation against a real system, remains an open
issue. We refer to [16–19] to support the validity of
QN models approximating actually implemented sys-
tems. Moreover, the choice of using QNs as the target
notation to model antipatterns does not reduce the
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applicability of our approach. In principle, any formal-
ism can be adopted to model antipatterns as long as
it is suitable to manifest performance variations. We
plan to further experiment this point by investigating
other languages to model antipatterns.

External threats concern the generalization of
results. We are aware this is not guaranteed, since our
models have been applied to the SensorNet only, how-
ever it has been used as a CPS representative example
in software performance engineering [7]. Although
CPS are the focus of this manuscript, the proposed
abstract models generalize to other types of systems.
Hence, we expect that it is possible to generalize our
results and findings, and we plan as future work to
investigate the applicability of proposed models in
different application domains.

6 Related Work
The work presented in this paper relates to two main
streams of research that we review in the following.

Software Performance Antipatterns. They have
been defined in the literature as bad practices lead-
ing to performance issues [5], and recently customized
for the CPS domain in [12]. Performance model-
ing of software antipatterns is an open issue of the
performance engineering domain, since many system
characteristics need to be captured, and it is not triv-
ial to derive the expected performance degradation.
This paper addresses this challenge presenting QN
models that give evidence of antipatterns’ impact on
the system performance. Our recent work focused on
investigating the performance antipatterns across the
operational profile space [38], previously defined with
a first-order logic representation, and later applied to
multiple modeling notations. A first attempt of inject-
ing software performance antipatterns in systems is
provided in [39], where the root causes of perfor-
mance problems are isolated and matched with the
specification of antipatterns. More recently, load test-
ing and profiling data is exploited to detect software
performance antipatterns when running Java applica-
tions in [40]. Application profiling is used also in [41]
where patterns are adopted; metrics measure their
architectural impact and potential performance opti-
mization. There exist other approaches dealing with
different types of antipatterns, e.g., in [42] the focus
is on services, and detection algorithms are generated
out of a simplified metamodel whose specification is
explicitly tailored for service-based systems. In the
broader context of matching the connections between

(anti)patterns and quality attributes (such as reliabil-
ity and security), several approaches e.g., [43, 44] are
representative. Recently, the number of detected per-
formance antipatterns has been adopted as a param-
eter to optimize performance and reliability proper-
ties of software systems in [45]. Complementary to
performance antipatterns, a line of research focuses
on monitoring the runtime performance characteris-
tics of software systems subject to dynamic changes,
e.g., in [46] monitors are used to instrument system
components with the goal of diagnosing performance
problems such as bottlenecks and hotspots. Run-time
adaptation is tackled also in [47] where principles of
designing smart CPS are reviewed, and performance
is acknowledged as a characteristic that changes over
time due to new operational circumstances affect-
ing the system behavior. Overall, the main difference
with state-of-the-art approaches using software per-
formance antipatterns is that they do not provide
plug-and-play models that analyze the performance
characteristics of CPS as we do in this paper.

Modeling and Performance Evaluation of CPS.
Model-based performance analysis of CPS is an open
issue of the performance engineering domain since
the interplay between cyber and physical entities is
challenging. This paper advocates the introduction of
performance models that capture the most common
bad practices leading to performance problems. In
the literature several approaches have been defined
for CPS modeling (e.g., [48–50]), however most
approaches investigate the security-related aspects of
CPS (e.g., [51]). The performance evaluation of CPS
uses a plethora of techniques [52], and there exist
two macro classes: (i) analytical and (ii) simulation
analysis. Analytical approaches use mathematical for-
mulas or equations that are formal and rigorous, but
they may fail to capture some system dynamics (e.g.,
unexpected events, uncertainties, transient states) that
can be expressed in simulation environments [53] (i.e.,
emulating the system behavior) at the cost of less
scalability [54]. A linear stochastic model is adopted
in [55] to quantify the performance degradation of
CPS when exposed to integrity attacks. In [56] the per-
formance evaluation is conducted through a control
law that undergoes a trade-off analysis including pri-
vacy costs. In [57] Markov models are applied in the
intelligent transportation system domain, and traffic
is guided by model predictions. A framework is pro-
posed in [58] to improve the performance of heteroge-
neous systems at design time, but software allocation
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is considered only as refactoring strategy. A Marko-
vian environment is described in [59], where queuing
models are adopted to get performance indices of a
CPS, with the goal of quantifying resource provi-
sioning under uncertain workload. Uncertainty is also
investigated in [60] where the sensitivity of the perfor-
mance models is studied taking into account variations
in the parameters of different modeling elements. A
simulation-based approach is proposed in [61] to eval-
uate how human factors affect the performance of CPS
when human interaction is required. Overall, the main
difference with state-of-the-art approaches modeling
and evaluating the performance of CPS is that they do
not convey the root causes of performance issues as
we do in this paper.

Summarizing, to the best of our knowledge, none
of these approaches is specifically tailored to model-
ing and analyzing software performance antipatterns
to support software developers in the interpretation of
CPS performance issues.

7 Conclusion and Future Work
This paper presents a model-based approach to under-
stand the performance issues of reactive systems, such
as CPS, under development. We develop plug-and-
play QN models to analyze the impact of eight soft-
ware performance antipatterns on CPS. These models
allow users to quantitatively determine the root causes
of performance problems in reactive systems. The
performance deterioration due to these antipatterns
might undermine software resilience, e.g., by slow-
ing the analysis of incoming requests and preventing
the system from managing critical situations, thus fail-
ing to meet performance and other requirements. This
leads to stakeholder dissatisfaction and economic loss,
especially when real-time concerns are not satisfied.
Experimental results obtained by applying our model-
based approach show increased system response time
due to a software bottleneck switch. When the abstract
models are applied to a real-world CPS, quantita-
tive results confirm that antipatterns deeply affect the
system performance.

As future work, we plan to develop a frame-
work that automatically detects antipatterns in CPS
by monitoring the system performance and exploiting
the provided abstract models (along with their corre-
sponding analysis results). For instance, knowing the
point where the system bottleneck switches is of key
relevance to preventing it. Moreover, we want to deter-
mine which antipatterns are the major culprits in terms

of performance degradation, i.e., how much antipat-
terns contribute to the violation of requirements, to
prioritize their solution when they coexist in a CPS.
This is of key relevance to enable technology for
future work that automatically detects the presence of
antipatterns, determines which ones are more relevant,
and thus points out how to refactor systems for the
removal of these bad practices.
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Sende, M.: Swarm intelligence and cyber-
physical systems: concepts, challenges and
future trends. Swarm and Evolutionary Compu-
tation 60, 100762 (2021)

[24] Audrito, G., Casadei, R., Damiani, F., Stolz,
V., Viroli, M.: Adaptive distributed monitors of
spatial properties for cyber–physical systems.
Journal of Systems and Software 175, 110908
(2021)

[25] Bai, Y., Huang, Y., Xie, G., Li, R., Chang,
W.: Asdys: Dynamic scheduling using active
strategies for multifunctional mixed-criticality
cyber–physical systems. IEEE Transactions on
Industrial Informatics 17(8), 5175–5184 (2020)

[26] Capota, E.A., Stangaciu, C.S., Micea, M.V.,
Curiac, D.-I.: Towards mixed criticality task
scheduling in cyber physical systems: Chal-
lenges and perspectives. Journal of Systems and
Software 156, 204–216 (2019)

[27] Bures, T., Matena, V., Mirandola, R., Pagliari, L.,
Trubiani, C.: Performance Modelling of Smart
Cyber-Physical Systems. In: Proc. Int. Conf.

https://ssrn.com/abstract=4459043
https://ssrn.com/abstract=4459043
https://doi.org/10.6084/m9.figshare.15101925
https://doi.org/10.6084/m9.figshare.15101925


Springer Nature 2021 LATEX template

REFERENCES 23

on Performance Engineering (ICPE), pp. 37–40
(2018)

[28] Stankovic, J.A.: Misconceptions about real-
time computing: A serious problem for next-
generation systems. IEEE Computer 21(10), 10–
19 (1988)

[29] Petriu, D.B., Woodside, M.: An intermediate
metamodel with scenarios and resources for gen-
erating performance models from uml designs.
Software & Systems Modeling 6, 163–184
(2007)

[30] Li, C., Altamimi, T., Zargari, M.H., Casale,
G., Petriu, D.C.: Tulsa: A tool for transforming
UML to layered queueing networks for perfor-
mance analysis of data intensive applications. In:
Bertrand, N., Bortolussi, L. (eds.) Proceedings
of the International Conference on Quantitative
Evaluation of Systems (QEST), vol. 10503, pp.
295–299 (2017)

[31] Bertoli, M., Casale, G., Serazzi, G.: Jmt: perfor-
mance engineering tools for system modeling.
SIGMETRICS Perform. Eval. Rev. 36(4), 10–15
(2009)

[32] Dallery, Y.: Approximate analysis of general
open queuing networks with restricted capacity.
Perform. Evaluation 11(3), 209–222 (1990)

[33] Higuera-Toledano, M.T., Risco-Martı́n, J.L.,
Arroba, P., Ayala, J.L.: Green adaptation of real-
time web services for industrial CPS within a
cloud environment. IEEE Trans. Ind. Informatics
13(3), 1249–1256 (2017)

[34] Alladi, T., Chamola, V., Zeadally, S.: Industrial
Control Systems: Cyberattack trends and coun-
termeasures. Computer Communications 155,
1–8 (2020)

[35] Argaw, S.T., Troncoso-Pastoriza, J.R., Lacey,
D., Florin, M., Calcavecchia, F., Anderson, D.,
Burleson, W.P., Vogel, J., O’Leary, C., Eshaya-
Chauvin, B., Flahault, A.: Cybersecurity of
Hospitals: discussing the challenges and work-
ing towards mitigating the risks. BMC Medical
Informatics and Decision Making 20(1), 146
(2020)

[36] Cortellessa, V., Marco, A.D., Inverardi, P.:
Model-Based Software Performance Analysis.
Springer, Berlin (2011)

[37] Wohlin, C., Runeson, P., Hst, M., Ohlsson, M.C.,
Regnell, B., Wessln, A.: Experimentation in
Software Engineering. Springer, Berlin (2012)

[38] Calinescu, R., Cortellessa, V., Stefanakos, I.,

Trubiani, C.: Analysis and Refactoring of Soft-
ware Systems Using Performance Antipattern
Profiles. In: Proc. Int. Conf. on Fundamental
Approaches to Software Engineering (FASE),
pp. 357–377 (2020)

[39] Wert, A., Happe, J., Happe, L.: Supporting swift
reaction: automatically uncovering performance
problems by systematic experiments. In: Proc.
Int. Conf. on Software Engineering (ICSE), pp.
552–561 (2013)

[40] Trubiani, C., Bran, A., van Hoorn, A., Avritzer,
A., Knoche, H.: Exploiting load testing and pro-
filing for performance antipattern detection. Inf.
Softw. Technol. 95, 329–345 (2018)

[41] Chen, Z., Chen, B., Xiao, L., Wang, X., Chen,
L., Liu, Y., Xu, B.: Speedoo: prioritizing per-
formance optimization opportunities. In: Proc.
Int. Conf. on Software Engineering (ICSE), pp.
811–821 (2018)

[42] Palma, F., Moha, N., Guéhéneuc, Y.-G.:
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