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ABSTRACT
The recent trend of uncontrolled spread of infectious diseases has

resulted in severe disruption to society on a worldwide scale. One

of the causes is represented by public transportation services that

contribute to the spread of an epidemic, which has consequences

for human health and the economy. Public health organisations call

for support from scientists to identify the main criticalities and take

countermeasures on time. This paper aims to support public author-

ities by exploiting the capability of self-adaptive systems (SaS) to

autonomously modify their behaviour when subject to changes in

their environment. We inherit from the literature patterns that inte-

grate distributed and central control of SaS, and we demonstrate the

effectiveness of these design patterns when deciding public health

measures applied to transportation services during an epidemic.

Our novel methodology consists of modelling and analysing control

action types that describe a unique interaction between a central

controller and a distributed controlled transportation system to get

a desired adaptation. We rely on probabilistic model checking to

provide formal guarantees on the expected number of infections de-

termining the epidemic evolution. Experimental results show that

our technique is adequate to counteract the epidemic scenarios,

thus supporting public health authorities in monitoring the status

of transportation services and making informed decisions.

KEYWORDS
Self-adaptive systems, epidemic, distributed control, central control,

probabilistic model checking, patterns
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1 INTRODUCTION
An epidemic is the rapid spread of an infectious disease infecting

a large number of people within a population in a short amount
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of time [19]. Public health measures [1, 3] aim to mitigate or re-

duce the impact of infectious diseases, through different approaches

including isolation of those infected, quarantine of exposed individ-

uals, promoting personal protective equipment usage, and social

distancing. However, when the population is highly mobile the

spread of an epidemic is worsened [11]. Public health measures

must therefore act on public transportation services, e.g., by identi-

fying the connections that are most at risk (due to a high number

of infections) and limiting travellers’ usage of such areas [7].

Modelling and simulation of the spread of diseases [2, 5, 22]

is a key factor for deciding public health countermeasures [10]

that are effective against future outbreaks or epidemics. The re-

search community recently proposed some self-adaptive health-

care policies [12, 20, 25] that have shown the benefits of integrating

adaptation to develop measures used during evolving public health

emergencies. In this context, the trade-off is between the restrictive-

ness of the measures and projected health-care benefits. However,

to the best of our knowledge, there is currently little work in the

direction of providing formal guarantees on quantifying the impact

of public health measures. To this end, we foresee the capability of

self-adaptive systems (SaS) as a paramount occasion in this domain,

since SaS show the unique characteristic of being autonomouswhen

adapting to changes in their environments [26], hence sensing epi-

demic scenarios and reacting accordingly.

Our work takes inspiration from the literature, specifically we

make use of a catalogue of five patterns (i.e., command, constraint,

isolation, influence, and pseudo-emergence) that have been de-

fined in [15] and show the peculiar characteristics of combining

distributed and central control in SaS. Kroher et al. [15] demon-

strate that the patterns provide the foundation for selecting the

appropriate action types for a certain situation as needed, and this

constitutes the motivation for our work. In this paper, we exploit

these patterns of applied control to provide formal guarantees while

evaluating the evolution of an epidemic, in the context of public

transportation services. More specifically, we model the aforemen-

tioned five patterns and we evaluate their effectiveness on the

Public Transportation (PT) system that is formulated as SaS under

an epidemic scenario.

Summarising, our main contributions are:

(i) formulation of the PT system under epidemic as a SaS

(ii) development of formal models for five design patterns that

are assessed in the literature as relevant to control SaS [15];

(iii) adoption of probabilistic model checking analysis technique

to support public health authorities in quantitatively un-

derstanding the evolution of epidemic scenarios,

(iv) an open-source implementation of the PT system; a Java im-

plementation of the Control Unit and entities of the Public

1
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Transportation SaS, including all models and experimental

results are publicly available [13],

(v) experimental results that quantitatively compare the impact

of the five patterns along with a scalability evaluation, thus

demonstrating the effectiveness of our approach.

The rest of the paper is organised as follows. Section 2 presents

the PT system and clarifies its connection with SaS. Sections 3, 4

and 5 illustrate themain technicalities whenmodelling and analysing

an epidemic’s evolution. Section 6 focuses on quantifying the impact

of control action types patterns [14], together with some scalabil-

ity considerations. Section 7 discusses threats to validity and the

main limitations of our approach. Section 8 argues on state-of-the-

art approaches that are more closely related. Section 9 provides

concluding remarks and outlines future research directions.

2 THE PUBLIC TRANSPORTATION SYSTEM
Figure 1 provides a birds-eye view of the system we use as our

motivating scenario and shows the distinct characteristics of self-

adaptive systems. We foresee a Control Unit that manages the Public
Transportation (PT) that represents theManaged System. PT includes

a set of entities that are connected through relations of interaction
or impact. The overall goal of the system is to reduce the risk of

infection for the population, and the control unit can trigger adap-

tation at different levels of granularity, depending on the involved

entities.

First, the Transportation Network 𝑁 entity represents the vari-

ous commuting options available within an urban area, servicing

a population with fixed routes. We represent the transportation

network mathematically as a directed graph 𝐺 = (𝑉 , 𝐸) compris-

ing vertices from the set 𝑉 = {𝑣1, . . . , 𝑣𝑛} and directed edges from

the set 𝐸 = 𝑉 × 𝑉 of pairs of vertices, such that (𝑣𝑖 , 𝑣𝑖 ) ∉ 𝐸, for

all 𝑣𝑖 ∈ 𝑉 . Figure 2 shows a simple example of a transportation

network, comprising seven vertices 𝑣1, . . . , 𝑣7 with interconnecting

bi-directional lines representing travel routes, labelled with the

distance between the vertices. These lines are short-hand for two

weighted, directed edges between vertices such that (𝑣𝑖 , 𝑣 𝑗 ) ∈ 𝐸
if, and only if, (𝑣 𝑗 , 𝑣𝑖 ) ∈ 𝐸. For convenience, we define a network
location 𝑙 of𝐺 as either a vertex or edge in𝐺 . In symbols, 𝑙 ∈ 𝑉 ∪ 𝐸,
which we write as 𝑙 ∈ 𝐺 .

Second, Population is the entity that collectively represents the

users of public transportation within the city. They directly interact
(depicted in Figure 1 as a bi-directional line) with the Transportation

Network, since they travel from a source to a destination location.

The Transportation Network provides the journey planner to sup-

port travellers in planning their journey.

Third, the Epidemic entity represents the level of infection to

which the population is exposed in case of close exposures. The

relationship between the population and the epidemic is managed

by a central node, namely Travel Risk Balance to denote that the

travellers are subject to a certain evolution of the infectious dis-

ease. After an incubation period, exposure to the disease causes a

susceptible traveller to become infected, and capable of spreading

the contagion to other susceptible travellers. The evolution of the

epidemic follows the Susceptible-Exposed-Infectious-Recovered (SEIR)
model [2, 5] that will be detailed later, see Section 3.

control

Transportation
Network

EpidemicPopulation

Public Health
Authority

Public Transportation (Managed System)

Control Unit

Travel
Risk

Balance
Legend:

Entity

Interaction

Impact

Figure 1: Public Transportation as a Self-Adaptive System

Figure 2: Transportation Network Exemplary Example

Fourth, the Public Health Authority (PHA) entity performs epi-

demic surveillance, i.e., it is in charge of tracking exposures [23].

Using the SEIR model, PHA performs an analysis to determine

suitable advice to control the evolution of an epidemic. To simplify

decision-making, PHA specifies categories of exposure risk, i.e., R:
RED indicates a high risk of exposure, Y: YELLOW moderate risk,

and G: GREEN means low risk. Each vertex of the travel network

𝑁 is labelled with R-Y-G depending on the majority of travellers

commuting in such a node and showing a certain exposure risk. For

instance, in Figure 2, 𝑣6 is RED, 𝑣7 is YELLOW, and all other vertices

are GREEN.
Entities in the PT system observe their environment via mon-

itored variables and react via controlled variables [14]. Table 1

presents the monitored and controlled parameters for each entity

of the PT system. Formally, we model each entity as a tuple 𝜎 =

(𝑝1, . . . , 𝑝𝑚) of parameter values in the product set P = 𝑃1×· · ·×𝑃𝑚 ,

where 𝑃𝑖 is the type of data stored in parameter 𝑝𝑖 for 1 ≤ 𝑖 ≤ 𝑚.

Both monitored and controlled parameters are observable; e.g. there

is an operation 𝑔𝑒𝑡𝑖 : P→ 𝑃𝑖 , such that 𝑔𝑒𝑡𝑖 (𝜎) = 𝑝𝑖 , the 𝑖𝑡ℎ param-

eter of the tuple 𝜎 . If 𝑝𝑖 of 𝜎 is a controlled parameter, then there

also exists an operation 𝑠𝑒𝑡𝑖 : P × 𝑃𝑖 → P that allows 𝑝𝑖 to be set to

new values by the entity. In symbols, 𝑠𝑒𝑡𝑖 (𝜎, 𝑣) (𝑝 𝑗 ) = 𝑣 , if 𝑖 = 𝑗 and

𝜎 (𝑝 𝑗 ) otherwise. When clear from the context, we write 𝑠𝑒𝑡𝑖 (𝜎, 𝑣)
in programming notation 𝑝𝑖 := 𝑣 .

2
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Entity Monitored Variables Controlled Variables

Transportation

Network

occupancy

capacity

journey planner

Population infection status

compliance

location

journey

Epidemic none none

Public Health

Authority

SEIR model

recommendation

prevention

Table 1: Public Transportation – Entity Variables

Population Entity Parameters. Let 𝑇 be the set of all travellers on

the transportation network. We model the traveller entity 𝑡 ∈ 𝑇 by

the tuple 𝜎𝑡 = (𝑠, 𝑐, 𝑙, 𝑗) such that

• 𝑠 ∈ 𝑀 , represents the current infection status as a SEIR

model compartment 𝑀 = {𝑆, 𝐸, 𝐼 , 𝑅,𝑄}, more details are

provided in Section 3,

• 𝑐 ∈ B, represents the compliance status determining adher-

ence to public health authority recommendations,

• 𝑙 ∈ 𝐺 is the current location of the traveller,

• 𝑗 ∈ 𝑃𝑎𝑡ℎ is the current journey of the traveller, represented

by a finite path of the graph 𝐺 .

All parameters have set operations, but parameter 𝑠 is restricted

such that we may only set 𝑠 := 𝑄 to represent a traveller in quaran-

tine. We name this set operation as 𝑠𝑒𝑡𝑄𝑢𝑎𝑟𝑎𝑛𝑡𝑖𝑛𝑒 . We fix 𝑐 := 𝑡𝑟𝑢𝑒

for our work which means that all travellers comply with public

health authority recommendations at all times.

Transportation Network Entity Parameters. We model the trans-

portation network entity by the tuple 𝜎𝑁 = (𝐺,𝑇𝑙 , 𝑘𝑙 , 𝑡𝑒𝑠𝑡𝑙 ,𝑚𝑜𝑑𝑒)
such that𝐺 is the network graph. For any location 𝑙 ∈ 𝐺 we specify

the parameters

• occupancy, 𝑇𝑙 ⊆ 𝑇 , the set of travellers whose current

location is 𝑙 ,

• capacity, 𝑘𝑙 ∈ N, sets the limit to a number 𝑘 on the number

of travellers allowed at 𝑙 at any one time,

• 𝑡𝑒𝑠𝑡𝑙 ∈ B, is 𝑡𝑟𝑢𝑒 if a testing station is set up at location 𝑙

and 𝑓 𝑎𝑙𝑠𝑒 otherwise,

• journey planner, i.e., the𝑚𝑜𝑑𝑒 ∈ {short, safe}, and it de-

notes the operational modes of the journey planner.

The interaction between the Transportation Network and the

Population is due to the strict relationship these two entities show.

In particular, the capacity 𝑘𝑙 , testing station 𝑡𝑒𝑠𝑡𝑙 and𝑚𝑜𝑑𝑒 parame-

ters have set operations which we name as 𝑠𝑒𝑡𝐶𝑎𝑝𝑎𝑐𝑖𝑡𝑦, 𝑠𝑒𝑡𝑇𝑒𝑠𝑡𝑖𝑛𝑔

and 𝑠𝑒𝑡𝑀𝑜𝑑𝑒 , for 𝑙 ∈ 𝐺 .

Epidemic Entity Parameters. While there are no parameters for

this entity, there is an interaction with the Population due to regulat-

ing the infection among travellers. We model this as the operation

𝑖𝑛𝑓 𝑒𝑐𝑡 : 𝑇 → 𝑇 such that 𝑖𝑛𝑓 𝑒𝑐𝑡 (𝑡) infects traveller 𝑡 ∈ 𝑇 if they

are susceptible. Otherwise, the infection status of 𝑡 is unmodified.

Public Health Authority Entity Parameters. We model this entity

as the tuple 𝜎𝑃𝐻𝐴 = (𝑝𝑟𝑒𝑣,𝑀, 𝑟𝑒𝑐), such that

• 𝑝𝑟𝑒𝑣 is a scalar measuring effectiveness of preventing in-

fections, where 𝑝𝑟𝑒𝑣 = 1.0 is the least and 𝑝𝑟𝑒𝑣 = 0.0 the

most effective preventative measures,

• 𝑀 is the SEIR infection model, formed from observing trav-

eller locations and infection status,

• 𝑟𝑒𝑐 : 𝐺 → P is the recommendation obtained from SEIR

analysis of𝑀 .

The 𝑝𝑟𝑒𝑣 prevention parameter has the set operation named 𝑠𝑒𝑡𝑃𝑟𝑒𝑣 ,

and the 𝑟𝑒𝑐 recommendation has the get operation named 𝑔𝑒𝑡𝑅𝑒𝑐 .

3 PUBLIC HEALTH AUTHORITY
The role of the Public Health Authority is to monitor the risk of

infection for the population using the transportation network. PHA

models the spread of an epidemic using the Susceptible-Exposed-
Infectious-Recovered (SEIR) model [2, 5] that partitions the popula-

tion of 𝑛 travellers into compartments. At every point in time, each

traveller in the population is in exactly one compartment with the

following meanings: S means a traveller is Susceptible to catch the

disease, E means a traveller has been Exposed to the disease and

is in the incubation period. The traveller is infected but does not

yet transmit the disease to others; travellers in compartment I are

Infectious and spread the disease in case of close exposure, while

travellers in R have recovered from the infection and will no longer

be infected by the disease.

The SEIR compartments correspond to traveller 𝑡 ’s disease pa-

rameter 𝑠 ∈ 𝜎𝑡 , as they transition from S to E when they become

infectious, E to I when they go through the disease’s incubation

period, and from I to R when they transition from infectious to a

recovered state. We extend the four standard SEIR compartments

by adding the quarantine compartment Q which corresponds to

travellers placed in isolation during their infectious period, hence

not spreading the disease to others.

Following the stochastic SEIR model developed in [5], let 𝑠 (𝑡),
𝑒 (𝑡), 𝑖 (𝑡), 𝑟 (𝑡) and 𝑞(𝑡) be differentiable functions denoting the

ratio of travellers belonging to compartments 𝑆 , 𝐸, 𝐼 , 𝑅 and 𝑄 ,

respectively, for a given time instant 𝑡 ≥ 0 such that 𝑠 (𝑡) + 𝑒 (𝑡) +
𝑖 (𝑡) + 𝑟 (𝑡) + 𝑞(𝑡) = 1. The transition of the population through

the compartments is defined by the ordinary differential equations

listed in (1) and (2), modified from [5] whereby

d𝑠

d𝑡
= −𝛽𝑖𝑠, d𝑒

d𝑡
= 𝛽𝑖𝑠 − 𝜖𝑒, d𝑖

d𝑡
= 𝜖𝑒 − 𝜒𝑖 − 𝛾 (1 − 𝜒)𝑖 (1)

d𝑞

d𝑡
= 𝜒𝑖

d𝑟

d𝑡
= 𝛾 (1 − 𝜒)𝑖 . (2)

The 𝛽 parameter is the contact rate, given as the mean of a Poisson

distribution to determine the number of close contacts between

susceptible and infectious travellers,
1

𝜖 is the disease’s incubation

period, given as the mean of an exponential distribution,
1

𝛾 is the

infectious period, given as the mean of an exponential distribution,

𝜒 , the ratio of quarantined travellers and
1

𝜌 the quarantine period.

In our work, we assume that travellers stay in quarantine until their

infectious period ends, after which they transition to R.

3.1 Formal Verification of the SEIR Model
PHAmakes use of the PRISM high-level modelling language [17] to

express the SEIR compartment mechanism as a module following

3
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the construction in [21] and presented in Listing 1. Line 1 clarifies

that it is a Continuous-Time Markov Chain (CTMC) model. The state

space is a discretisation from the real-typed variables of SEIR to the

product of integer-typed variables s, e, i, and r in the range [0..N]
declared in Lines 11 to 14, where N is a constant integer-typed value.
These variables encode current numbers of travellers in the corre-

sponding compartments of S, E, I, and R, initialised with data values

s0, i0, e0, and r0, obtained from epidemic monitoring activities.

To keep the model simple, we do not include the Q compartment.

Transitions between compartments are given in Lines 16, 17, and

18 and are defined by guarded commands that determine the rates

at which values of the module’s variables change, specifically they

present the following form:

[𝑎𝑐𝑡𝑖𝑜𝑛] 𝑔𝑢𝑎𝑟𝑑− > 𝑟1 : 𝑢𝑝𝑑𝑎𝑡𝑒1 + · · · + 𝑟𝑛 : 𝑢𝑝𝑑𝑎𝑡𝑒𝑛 (3)

where the command is labelled action and 𝑔𝑢𝑎𝑟𝑑 is a Boolean-

typed expression over the model variables. If the guard is satisfied

then 𝑢𝑝𝑑𝑎𝑡𝑒1, . . . , 𝑢𝑝𝑑𝑎𝑡𝑒𝑛 change the model variables according

to positive value rates 𝑟1, . . . , 𝑟𝑛 , which are input parameters to

exponential distributions.

1 ctmc

2 const double beta = 1.3;

3 const double epsilon = 1/3.21;

4 const double gamma = 1/2.27;

5 const int N = 100; const double L;const int k;

6 const double prev = 1.0;

7 const int s0=99; const int e0=0;

8 const int i0=1; const int r0=0;

9

10 module seir

11 s: [0..N] init s0;

12 e: [0..N] init e0;

13 i: [0..N] init i0;

14 r: [0..N] init r0;

15

16 [ex] (s>0&i>0&e<N) -> beta*s*i*prev/N:(s'=s-1)&(e'=e+1);

17 [in] (e>0&i<N) -> epsilon*e :(e'=e-1)&(i'=i+1);

18 [re] (i>0&r<N) -> gamma*i:(i'=i-1)&(r'=r+1);

19 endmodule

Listing 1: Prism Module of SEIR Compartment Model

3.2 Analysing Exposure Risk at a Vertex
To determine the exposure of being infected in vertex 𝑣 , PHA ini-

tialises the constants, see Lines 2 to 8 in Listing 1. First, it is neces-

sary to set the SEIR model parameters to appropriate values. For

instance, we can set the SEIR model parameters to values estimated

in [5] for modelling the COVID-19 pandemic. The social distanc-

ing factor parameter is set to dist=1.0 meaning that there is no

social distancing measure in place to inhibit exposure. Second, it is

necessary to quantify disease states of travellers within the local
of 𝑣 : either at vertex 𝑣 or any incoming edge of 𝑣 (e.g., travellers

currently en route to shortly arrive). For example, we suppose there

are N=100 travellers local to 𝑣 , with one infectious case, i.e., i0=1,
and all other compartment data values are set to zero.

To analyze the risk of disease exposure at vertex 𝑣 ∈ 𝑉 , PHA
verifies the Continuous Stochastic Logic (CSL) [4] property

P=?[F < k (i >= L)] (4)
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Figure 3: Probability of the number of infection cases at
vertex 𝑣 exceeding the safety limit threshold L after k days

against the CTMC model expressed by the SEIR module. Property

(4) is formed from the P operator to return the probability value of

reaching a model state in less than k steps, such that the number of

infectious travellers at 𝑣 will reach or exceed the threshold limit L.
Figure 3 shows the results of the PRISM experiments we ran

following [21] to verify Property (4) on SEIR, i.e., predicting the

probability of the number of infection cases meeting or exceeding

the threshold of L after k days. We ran experiments ranging the

safety threshold limit L from 2 to 24 infectious cases and k over 7
days (1 week) to 28 days (4 weeks). For example, from these results,

we observe that the probability of having more than 10 infection

cases in 7 days is lower than 0.1, whereby it increases during longer

observation windows: 0.4 after two weeks, and up to 0.65 after four

weeks. These results support PHA in early intervention to manage

the outbreak situation. Figure 3 shows the probability of the thresh-

old limit being hit is considerably lower after 7 days compared to

14, 21, or 28 days. Thus, we fix k = 7 and the value L is fixed ac-

cording to current public health measures. Verification of Property

(4) against the SEIR module of vertex 𝑣 yields the probability value

𝑝𝑣 , which measures the exposure risk at 𝑣 .

3.3 Health Recommendations
To simplify decision-making using verification results obtained by

PRISM, PHA uses 𝐶 = {𝐺𝑟𝑒𝑒𝑛,𝑌𝑒𝑙𝑙𝑜𝑤, 𝑅𝑒𝑑} to categorise levels of

exposure risk. Formally, the categories in 𝐶 represent a set of unit

interval partitions such that 𝐺𝑟𝑒𝑒𝑛 = [0, 0], 𝑌𝑒𝑙𝑙𝑜𝑤 = (0, 𝜃 ], and
𝑅𝑒𝑑 = (𝜃, 1], for 0 < 𝜃 < 1. Given the category 𝑐 ∈ 𝐶 , we define
corresponding mappings 𝑐𝜃 : [0, 1] → [0, 1] such that 𝑐𝜃 (𝑝) = 𝑐 ,
is the constant canonical probability value representing the range

of exposure risk in each category. The number of categories can

be modified to enable more or less fine-grained measurements of

exposure risk.

Formally, we define the public health authority’s recommendation
as a function 𝑟𝑒𝑐 : 𝐺 → P of vertices and edges of the graph to

probability values such that

𝑟𝑒𝑐 (𝑣) = 𝑐𝜃 (𝑝𝑣) (5)

4
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is the canonical value for 𝑣 ∈ 𝑉 , and 𝑟𝑒𝑐 (𝑒) = 𝑟𝑒𝑐 (𝑣), for each
incoming edge 𝑒 ∈ 𝐸 of 𝑣 .

4 THE TRANSPORTATION NETWORK
The Transportation Network entity provides the journey planning
to the population, i.e., indications on the path to follow from the

source to the destination vertices. Formally, the journey planning is

represented by a mapping 𝑗𝑜𝑢𝑟 : 𝑉 ×𝑉 ×𝑚𝑜𝑑𝑒 → 𝑃𝑎𝑡ℎ such that

computing of 𝑗𝑜𝑢𝑟 (𝑣1, 𝑣𝑛,𝑚𝑜𝑑𝑒) uses the network’s graph repre-

sentation𝐺 = (𝑉 , 𝐸) to compute a journey between a source vertex

𝑣1 to a destination vertex 𝑣𝑛 as a finite sequence𝜔 = (𝑣1, 𝑣2, . . . , 𝑣𝑛)
of vertices in 𝑉 such that there exists an edge 𝑒𝑖 in 𝐸 connecting

𝑣𝑖 to 𝑣𝑖+1, for 1 ≤ 𝑖 < 𝑛. We call the sequence 𝜔 a path between

vertices 𝑣1 and 𝑣𝑛 . Let 𝑃𝑎𝑡ℎ be the set of all finite paths of 𝐺 .

4.1 Journey Planner Modes
The journey planner has two modes of operation, which determine

the properties of the returned 𝑃𝑎𝑡ℎ. If 𝜔 = 𝑗𝑜𝑢𝑟 (𝑣1, 𝑣𝑛,𝑚𝑜𝑑𝑒) then
• when𝑚𝑜𝑑𝑒 = short, 𝑗𝑜𝑢𝑟 returns the shortest path between
𝑣1 and 𝑣𝑛 using Dijkstra’s Algorithm, with weighted edges

according to distances between locations,

• when𝑚𝑜𝑑𝑒 = safe, 𝑗𝑜𝑢𝑟 returns the guaranteed safest path
between 𝑣1 and 𝑣𝑛 , based on PHA recommendation.

While the shortest path can be computed directly from 𝐺 , the

safest path is instead derived via probabilistic model checking ver-

ification. PRISM modelling language is adopted as the formalism

of choice, and the model is synthesised from the transportation

network graph representation 𝐺 .

1 mdp

2 const int v1 = 1;const int v2 = 2;const int v3 = 3;

3 const int v4 = 4;const int v5 = 5;const int v6 = 6;

4 const int v7 = 7;

5

6 const int src = v4;const int dst = v1;

7 const int succ = 8;const int fail = 9;

8

9 const double RED = 0.10; const double YEL = 0.05;

10 const double GRE = 0.0;

11

12 module Network

13 l : [1.. fail] init src;

14

15 // vertex v6 is labelled RED

16 [r56] (l=v5)&(l!=dst) -> 1-RED:(l'=v6) + RED:(l'=fail);

17 [r76] (l=v7)&(l!=dst) -> 1-RED:(l'=v6) + RED:(l'=fail);

18 [r16] (l=v1)&(l!=dst) -> 1-RED:(l'=v6) + RED:(l'=fail);

19

20 // vertex v7 is labelled YELLOW

21 [r17] (l=v1)&(l!=dst) -> 1-YEL:(l'=v7) + YEL:(l'=fail);

22 [r47] (l=v4)&(l!=dst) -> 1-YEL:(l'=v7) + YEL:(l'=fail);

23 [r67] (l=v6)&(l!=dst) -> 1-YEL:(l'=v7) + YEL:(l'=fail);

24

25 // vertices labelled GREEN (omitted for brevity)

26 [r21] (l=v2)&(l!=dst)-> 1-GRE:(l'=v1) + GRE:(l'=fail);

27 [r43] (l=v4)&(l!=dst)-> 1-GRE:(l'=v3) + GRE:(l'=fail);

28 [r32] (l=v3)&(l!=dst)-> 1-GRE:(l'=v2) + GRE:(l'=fail);

29 ...

30 [succ] (l=dst) -> (l'=succ);

31 [fail] (l=fail) -> true;

32 endmodule

Listing 2: Fragment of the Synthesised PRISM Module

4.2 Markov Chain Model of the Network
Listing 2 presents a fragment of the Network module synthesised

from the example shown in Figure 2. Given the graph 𝐺 = (𝑉 , 𝐸),
the state space l : [1..fail] is constituted of the vertices in 𝑉 ,

the succ and fail states. Line 1 identifies the model as a Markov
Decision Process (MDP). Lines 2 to 4 are constants numbering ver-

tices v1 to v7 with integer-typed values. Line 6 sets constants src
and dst, i.e., the journey’s source and destination vertices. The

succ state represents the successful exposure-free travel, while

fail represents the state in which travel has resulted in exposure.

MDP module has the same transition command syntax as shown

in (3), however 𝑟1, . . . , 𝑟𝑛 are now probability values such that 𝑟𝑖 ∈
[0, 1] is the probability 𝑢𝑝𝑑𝑎𝑡𝑒𝑖 occurs when the guard condition

is satisfied, and

∑𝑛
𝑖=1 𝑟𝑖 = 1. Each edge of the graph’s structure is

encoded by a module transition and the recommendation given by

Equation (5) assigns the transition probabilities according to the

risk category. The edge (𝑣𝑖 , 𝑣 𝑗 ) ∈ 𝐸 is synthesised as the transition

[rij] (l=𝑣𝑖)&(l!=dst) -> 1 − 𝑝𝑖:(l’=𝑣 𝑗) + 𝑝𝑖:(l’=FAIL);

with action rij, naming the route between vertices 𝑣𝑖 and 𝑣 𝑗 . The

guard is satisfied when the state variable l is equal to 𝑣𝑖 , and is not

the destination state dst. In this case, the probability of exposure-

free travel to 𝑣 𝑗 is 1 − 𝑝𝑖 ; the next state is given by the update

command l’=𝑣 𝑗 . Otherwise, with probability 𝑝𝑖 , the next transition

is the FAIL state as the travel has resulted in an exposure. The

probabilities are supplied by PHA recommendation in Equation (5).

The MDP in Listing 2 comprises transitions extracted from our

example in Figure 2. Since PHA has set vertex v6 to high-risk, Lines
16-18 use the constant RED, set to 0.10 for transition probabilities of
incoming edges to vertex 𝑣6. Similarly, Lines 21-23 uses the constant

YEL, set to 0.05 for transition probabilities of incoming edges to

vertex 𝑣7. The remaining edges are risk-free and use the constant

GRE set to 0.0. In this case, there is no possibility of infection,

e.g., probability 1 = 1 − GRE of transitioning to the next state.

We omit most of these transitions for brevity. Lastly, Line 30 has

transition with guard l=dst, meaning that the journey has ended

in the destination state successfully, while Line 31 is a self-loop

transition in the fail state.

4.3 Safest Journey Guarantee
Suppose that a traveller wishes to travel from source vertex 𝑣4 to

destination vertex 𝑣1. We synthesised the corresponding model by

setting src = 4 and dst = 1. Note that the initial state of the MDP

is set to src. To obtain the safest route, we verify the Probabilistic
Computation Tree Logic Formula (PCTL) [9] property

Pmax=?[F(l = succ)] (6)

against the MDP model expressed by the Network module. MDP

shows a non-deterministic choice that must be resolved when there

are multiple transitions available at a state. For example, when l =
v1 three transitions are available: r16, r17, and r12 which corre-

spond to potential routes a traveller may decide to take. Property

(6) is a reachability property formed from the Pmax operator, which
resolves non-determinism into a strategy, yielding the maximum

probability value of reaching state succ. When Property (6) is veri-

fied against the synthesised MDP model, we obtain the guaranteed

safest journey as the strategy (v4, v3, v2, v1). While this strategy
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Figure 4: Feedback Loop Workflow

represents the safest path in 𝐺 , it is not the shortest, but it avoids

both the RED and YELLOW labelled vertices.

In summary, when traveller 𝑡 requests a journey, the result 𝜔 =

𝑗𝑜𝑢𝑟 (𝑠𝑜𝑢𝑟𝑐𝑒, 𝑑𝑒𝑠𝑡,𝑚𝑜𝑑𝑒) is computed and sent to the traveller, such
that the journey parameter 𝑗 is set by the operation 𝑠𝑒𝑡 𝐽𝑜𝑢𝑟𝑛𝑒𝑦 (𝜔).

5 PT SYSTEM FEEDBACK LOOP SIMULATION
We implement the self-adaptive feedback loop for the Public Trans-

portation system as an extendable Java library, thus simulating adap-

tations for several epidemic scenarios. The Feedback Loop workflow
is depicted as the dashed box in Figure 4, and comprises the control

unit, the public health authority, and the transportation network.

Each iteration of the loop represents a single day (i.e., stored in

the counter variable day), and our simulation is used primarily to

record the number of infection cases per day.

5.1 Feedback Loop Initialisation
Before the Feedback Loop starts, there exists an Initialise phase that
is manually performed. It takes as input values for SEIR model

parameters 𝛽 , 𝜖 , and 𝛾 , the transportation network, a population of

travellers and their infection status which are translated into the

graph data structure 𝐺 and collection of travellers 𝑇 ; forming enti-

ties 𝜎𝑃𝐻𝐴 and 𝜎𝑁 of the PT system. The Initialise phase translates
health measures into CAT patterns that program the control unit’s

adaptation of the PT system.

For our experimentation (see Section 6), we fix the number of

simulated days over which the Feedback Loop will run to 100. More-

over, we set one traveller to be infected with the disease. Initially,

travellers are placed at a source vertex and given a destination ver-

tex to travel to. We distribute travellers equally across the vertices.

5.2 Feedback Loop Simulation
After initialisation is completed, the simulation of the Feedback
Loop starts. On day = 1, the PHA monitors the Transport Network

and applies the SEIR analysis described in Section 3. Once com-

pleted, recommendations are sent to the control unit by the 𝑔𝑒𝑡𝑅𝑒𝑐

command. The Control Unit invokes the 𝑐𝑜𝑛𝑡𝑟𝑜𝑙 operation which

conditionally applies CAT patterns to adapt the Transport Network

to risks reported by the PHA. We will describe CAT patterns adap-

tations in detail in Section 6. The 𝑢𝑝𝑑𝑎𝑡𝑒 determines the next state

of all entities (described below) and is sent back to the Control Unit.

The diamond conditional labelled 𝑟𝑒𝑐? is a test to decide if another

recommendation from the PHA is needed. Recommendations from

the PHA occur weekly, e.g., 𝑟𝑒𝑐? ≡ (𝑑𝑎𝑦 mod 7) = 0.

Algorithm 1 Update Simulation Parameters

1: Method update()

2: for traveller in Population do
3: 𝑐𝑒𝑙𝑙 ← traveller disease status 𝑠

4: if 𝑐𝑒𝑙𝑙 > 0 then
5: 𝑐𝑒𝑙𝑙 ← 𝑐𝑒𝑙𝑙 − 1
6: if 𝑐𝑒𝑙𝑙 = 0 then 𝑐𝑒𝑙𝑙 ← −1
7: if 𝑐𝑒𝑙𝑙 = 100 then 𝑐𝑒𝑙𝑙 ← 𝑃𝐼
8: if 𝑐𝑒𝑙𝑙 = 200 then 𝑐𝑒𝑙𝑙 ← −1
9: if 𝑐𝑒𝑙𝑙 = 0 then
10: 𝑛 ← 𝑛𝑢𝑚𝑏𝑒𝑟𝑂 𝑓𝐶𝑙𝑜𝑠𝑒𝐶𝑜𝑛𝑡𝑎𝑐𝑡𝑠 (𝑙)
11: 𝑐𝑜𝑛𝑡𝑎𝑐𝑡𝑠 ← 𝑔𝑒𝑡𝑇𝑟𝑎𝑣𝑒𝑙𝑙𝑒𝑟𝑠𝐴𝑡𝐿𝑜𝑐𝑎𝑡𝑖𝑜𝑛(𝑙, 𝑛)
12: if 𝑖𝑛𝑓 𝑒𝑐𝑡𝑒𝑑 (𝑐𝑜𝑛𝑡𝑎𝑐𝑡𝑠) then 𝑐𝑒𝑙𝑙 ← 100 + 𝑃𝐸
13: if 0 < 𝑐𝑒𝑙𝑙 < 100 then
14: if 𝑡𝑒𝑠𝑡𝑆𝑡𝑎𝑡𝑖𝑜𝑛(𝑙) and (random value < 𝜒) then

𝑐𝑒𝑙𝑙 ← 200 + 𝑃𝑄
15: 𝑙 ← 𝑡𝑟𝑎𝑣𝑒𝑙 (𝑙)
16: 𝑑𝑎𝑦 ← 𝑑𝑎𝑦 + 1

The 𝑢𝑝𝑑𝑎𝑡𝑒 method’s implementation is given by Algorithm (1),

which is based on and extends the Stochastic SEIR model developed

in [5]. The algorithm runs once per day, iterating over all travellers

𝑡 ∈ 𝑇 in the population (Line 2) and updating each traveller’s loca-

tion and disease state 𝑠 , represented by an integer value 𝑐𝑒𝑙𝑙 in the

range [0, 300). If 𝑐𝑒𝑙𝑙 = 0 then 𝑡 is in the susceptible compartment S.

Lines 10-12 determine if 𝑡 has been exposed by choosing 𝑛 number

of close contacts, by sampling a Poisson process with parameter 𝛽 .

If a traveller is found to be 𝑖𝑛𝑓 𝑒𝑐𝑡𝑒𝑑 , then 𝑐𝑒𝑙𝑙 ← 100 + 𝑃𝐸 , where
𝑃𝐸 is sampled from an exponential distribution with parameter 𝜖 ;

determining the number of days 𝑡 is in the exposed (s=E) compart-

ment. We added a fixed small social distancing factor of 1.0 × 10−5,
i.e., the probability that 𝑡 is adequately distanced from others thus

avoiding exposure.

Lines 4 to 8 codify SEIR compartment behaviour. When 𝑐𝑒𝑙𝑙 >

100, it means 𝑡 is passing through E, (100 < 𝑐𝑒𝑙𝑙 < 200), I (0 <

𝑐𝑒𝑙𝑙 < 100) and Q (𝑐𝑒𝑙𝑙 < 200). In this last case, a traveller may

only go into quarantine if they are infectious and their location 𝑙 has

a test station, modelled by the 𝑡𝑒𝑠𝑡𝑆𝑡𝑎𝑡𝑖𝑜𝑛(𝑙) predicate. If so, then a

random value is selected, if less than 𝜒 , then we set 𝑐𝑒𝑙𝑙 ← 200+𝑃𝑄
where 𝑃𝑄 is a sample of the exponential distribution with parameter

𝜒 ; the number of days 𝑡 remains in quarantine (s=Q), and cannot

infect any other traveller. If 𝑐𝑒𝑙𝑙 = 200 then Line 8 sets 𝑐𝑒𝑙𝑙 ← −1,
and 𝑡 is now in the recovered compartment (s=R) and cannot be

re-infected.

Once the disease status of 𝑡 is updated, Line 15 updates their

location. Travellers in our simulation follow very simple behaviour.

They begin at a source location and journey to their destination,

based on the results of the journey planner. Once they reach their

destination, they again consult the journey planner to return to the

source. This behaviour models the most common use case of the

network where a traveller journeys between home, workplace, and

back again. Lastly, Line 16 increments the day counter variable.
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6 CONTROL ACTION TYPES PATTERNS
The Control Unit (see Figure 1) supervises and manages the trans-

portation system, its role is to provide adaptation plans to PT system

entities. To this end, the Control Until relies on the designed con-
trol action type (CAT) patterns [14] which give a methodological

approach to specifying how the managed system adapts. There

are five CAT patterns that we use to express the self-adaptive be-

haviour of the PT system: command, constraint, isolation, influence,
and pseudo-emergence. This section evaluates the effectiveness of

these patterns in reducing the infection risk of travellers.

Signature Σ𝐶𝐴𝑇

Imports Σ𝐶 , Σ𝐾

Operations 𝑐𝑜𝑚𝑚𝑎𝑛𝑑 : 𝐸𝑛𝑡𝑖𝑡𝑦 ×𝐶 → 𝐸𝑛𝑡𝑖𝑡𝑦

𝑐𝑜𝑛𝑠𝑡𝑟𝑎𝑖𝑛𝑡 : 𝐸𝑛𝑡𝑖𝑡𝑦 × 𝐾 → 𝐸𝑛𝑡𝑖𝑡𝑦

𝑖𝑠𝑜𝑙𝑎𝑡𝑖𝑜𝑛 : 𝐸𝑛𝑡𝑖𝑡𝑦 ×𝐶 → 𝐸𝑛𝑡𝑖𝑡𝑦

𝑖𝑛𝑓 𝑙𝑢𝑒𝑛𝑐𝑒 : 𝐸𝑛𝑡𝑖𝑡𝑦 × 𝐸𝑛𝑡𝑖𝑡𝑦 ×𝐶 ∪ 𝐾 → 𝐸𝑛𝑡𝑖𝑡𝑦

𝑝𝑠𝑒𝑢𝑑𝑜𝐸𝑚𝑒𝑟𝑔𝑒𝑛𝑐𝑒 : 𝐸𝑛𝑡𝑖𝑡𝑦 → 𝐸𝑛𝑡𝑖𝑡𝑦

We specify CAT patterns by the Signature Σ𝐶𝐴𝑇 , which com-

prises Σ𝐶 for commands to be executed by entities, and Σ𝐾 con-

straints to be applied to entities. Our pattern specifications are

based on the entity interactions described by the diagrams in [14].

For each pattern, we present experimental results of simulations

run over 100 days. Each simulation is instantiated with the trans-

portation network in Figure 2 and a population of 100 travellers,

with one traveller initially infected. Presented data series show the

average number of active infections per day, over an average of

ten simulation runs. The parameter values for SEIR compartment

modelling are 𝛽 = 1.3, 𝜖 = 1

3.21 , 𝛾 = 1

2.27 , averaged from values

obtained from the COVID-19 pandemic we inherit from [5].

6.1 Command
The command pattern establishes a direct communication between

the Control Unit and a Target entity. In our system, the Public

Health Authority issues measures impacting on the SEIR model.

6.1.1 Pattern Syntax. The syntax of the command pattern is of the

form 𝑐𝑜𝑚𝑚𝑎𝑛𝑑 : 𝐸𝑛𝑡𝑖𝑡𝑦 × 𝐶 → 𝐸𝑛𝑡𝑖𝑡𝑦 which takes as input the

target 𝑡𝑎 ∈ 𝐸𝑛𝑡𝑖𝑡𝑦, and a command 𝑐 listed in signature Σ𝐶 such

that the command pattern is the term 𝑐𝑜𝑚𝑚𝑎𝑛𝑑 (𝑡𝑎, 𝑐) invoked by

the Control Unit, it sends 𝑐 directly to 𝑡𝑎 to change the target’s

parameters. The 𝑒𝑥𝑒𝑐𝑢𝑡𝑒 operation named by Σ𝐶 is the Control

Unit’s interface to send commands to a target entity.

Signature Σ𝐶

Commands 𝑠𝑒𝑡𝑀𝑜𝑑𝑒 (𝑁,𝑚𝑜𝑑𝑒), 𝑠𝑒𝑡𝑃𝑟𝑒𝑣 (𝑓 )
Operations 𝑒𝑥𝑒𝑐𝑢𝑡𝑒 : 𝐸𝑛𝑡𝑖𝑡𝑦 ×𝐶 → 𝐸𝑛𝑡𝑖𝑡𝑦

6.1.2 Pattern Semantics. The target’s interpretation of 𝑒𝑥𝑒𝑐𝑢𝑡𝑒 de-

fines the semantics of the command pattern. If the command corre-

sponds to a 𝑠𝑒𝑡 operation of the target, then its parameter values

change accordingly. Otherwise, the command is ignored by the

target. In this sense, commands are simply 𝑠𝑒𝑡 operations applied

to the target by the Control Unit. Mathematically, let 𝜎𝑡𝑎 be the
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Figure 5: Command pattern

parameters of the target entity 𝑡𝑎 and 𝑐 is the command to set

the 𝑖𝑡ℎ parameter to the value 𝑣 ; e.g. 𝑐 ≡ 𝑠𝑒𝑡𝑖 (𝜎𝑡𝑎, 𝑣). The 𝑒𝑥𝑒𝑐𝑢𝑡𝑒
operation is interpreted by 𝑡𝑎 according to the equation

𝑒𝑥𝑒𝑐𝑢𝑡𝑒𝑡𝑎 (𝜎𝑡𝑎, 𝑐) =
{
𝑠𝑒𝑡𝑖 (𝜎𝑡𝑎, 𝑣) if 𝑠𝑒𝑡𝑖 (𝑣) defined on 𝑡𝑎

𝜎𝑡𝑎 otherwise.

Formally, J𝑐𝑜𝑚𝑚𝑎𝑛𝑑 (𝑡𝑎, 𝑐)K𝑡𝑎 (𝜎𝑡𝑎) = 𝑒𝑥𝑒𝑐𝑢𝑡𝑒𝑡𝑎 (𝜎𝑡𝑎, 𝑐).
By this definition, we have the following commands for the

transport network entity:

• 𝑐𝑜𝑚𝑚𝑎𝑛𝑑 (𝑁, 𝑠𝑒𝑡𝑀𝑜𝑑𝑒 (𝑁,𝑚𝑜𝑑𝑒 := {safe, short})) sets the
journey planner mode

• 𝑐𝑜𝑚𝑚𝑎𝑛𝑑 (𝑃𝐻𝐴, 𝑠𝑒𝑡𝑃𝑟𝑒𝑣 (𝑓 )), sets 𝑝𝑟𝑒𝑣 := 𝑓 , such that the

public health authority recommends preventative measures

to factor 𝑓 .

6.1.3 Pattern Adaptation Results. Figure 5 shows the application of

the command pattern sent by the Control Unit to the Public Health

Authority entity. This causes the PHA to issue health measures

corresponding to the supplied effective factor. For instance, PHA

can indicate wearing a properly fitted mask, frequent hand washing,

and covering the mouth and nose with a bent elbow or tissue in

case of cough. Mathematically, the prevention factor (𝑝𝑟𝑒𝑣) scales

the behaviour SEIR parameter 𝛽 ; e.g., the parameter of the Poisson

process controlling the number of contacts is given by 𝑝𝑟𝑒𝑣 · 𝛽 .
The command pattern 𝑐𝑜𝑚𝑚𝑎𝑛𝑑 (𝑃𝐻𝐴, 𝑠𝑒𝑡𝑃𝑟𝑒𝑣 (0.75)) therefore

scales 𝛽 by 0.75, representing mostly ineffective measures to pre-

vent infection. This results in a sharp spike at approximately day

37 of the simulations, then quickly dropping off. The command

pattern 𝑐𝑜𝑚𝑚𝑎𝑛𝑑 (𝑃𝐻𝐴, 𝑠𝑒𝑡𝑃𝑟𝑒𝑣 (0.50)) offers improved protection

against infection and flattens the spike, causing the epidemic to

last almost to the end of the 100 days. Lastly, the command pattern

𝑐𝑜𝑚𝑚𝑎𝑛𝑑 (𝑃𝐻𝐴, 𝑠𝑒𝑡𝑃𝑟𝑒𝑣 (0.25)) offers the best protection, resulting
in very few infections and with the epidemic ending before day 46

of the simulation.

6.2 Constraint
The constraint pattern includes constraints that limit the scope of

the behaviour of a Target entity. In our system, the Transportation

Network limits the circulation of the Population.
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Figure 6: Constraint and Isolation patterns

6.2.1 Pattern Syntax. The syntax of the constraint pattern is of the

form 𝑐𝑜𝑛𝑠𝑡𝑟𝑎𝑖𝑛𝑡 : 𝐸𝑛𝑡𝑖𝑡𝑦 × 𝐾 → 𝐸𝑛𝑡𝑖𝑡𝑦 which takes as input the

target 𝑡𝑎 ∈ 𝐸𝑛𝑡𝑖𝑡𝑦, and a constraint 𝑘 listed in signature Σ𝐾 such

that the constraint pattern is the term 𝑐𝑜𝑛𝑠𝑡𝑟𝑎𝑖𝑛𝑡 (𝑡𝑎, 𝑘) invoked by

the Control Unit which sends 𝑘 directly to 𝑡𝑎 to change the target’s

parameters.

Signature Σ𝐾

Constraints 𝑠𝑒𝑡𝐶𝑎𝑝𝑎𝑐𝑖𝑡𝑦 (𝑙, 𝑣), 𝑠𝑒𝑡𝑄𝑢𝑎𝑟𝑎𝑛𝑡𝑖𝑛𝑒 (𝑡)
Operations 𝑎𝑝𝑝𝑙𝑦 : 𝐸𝑛𝑡𝑖𝑡𝑦 × 𝐾 → 𝐸𝑛𝑡𝑖𝑡𝑦

Similarly to the command pattern, when a constraint is sent to a

target entity, it is immediately applied and it restricts the target’s

behaviour. The 𝑎𝑝𝑝𝑙𝑦 operation named by Σ𝐾 is the Control Unit’s

interface to send constraints to a target entity.

6.2.2 Pattern Semantics. The target’s interpretation of 𝑎𝑝𝑝𝑙𝑦 de-

fines the semantics of the constraint pattern. Mathematically, let

𝜎𝑡𝑎 be the parameters of the target entity 𝑡𝑎 and 𝑘 is the constraint

to set the 𝑖𝑡ℎ parameter to the value 𝑣 ; e.g., 𝑘 ≡ 𝑠𝑒𝑡𝑖 (𝜎𝑡𝑎, 𝑣) acts as
a restriction on the behaviour of entity 𝑡𝑎. The 𝑎𝑝𝑝𝑙𝑦 operation is

interpreted by 𝑡𝑎 according to the equation

𝑎𝑝𝑝𝑙𝑦𝑡𝑎 (𝜎𝑡𝑎, 𝑘) (𝑣) =
{
𝑠𝑒𝑡𝑖 (𝜎𝑡𝑎, 𝑣) if 𝑠𝑒𝑡𝑖 defined on 𝑡𝑎

𝜎𝑡𝑎 otherwise.

Formally, J𝑐𝑜𝑛𝑠𝑡𝑟𝑎𝑖𝑛𝑡 (𝑡𝑎, 𝑘)K𝑡𝑎 (𝜎𝑡𝑎) = 𝑎𝑝𝑝𝑙𝑦𝑡𝑎 (𝜎𝑡𝑎, 𝑘).
By this definition, we have the following constraints for the

transportation network and population entities:

• 𝑎𝑝𝑝𝑙𝑦 (𝜎𝑁 , 𝑠𝑒𝑡𝐶𝑎𝑝𝑎𝑐𝑖𝑡𝑦 (𝑙, 𝑘)), sets𝑘𝑙 := 𝑣 , which constrains
location 𝑙 to allow only 𝑣 travellers at any time.

• 𝑎𝑝𝑝𝑙𝑦 (𝜎𝑡 , 𝑠𝑒𝑡𝑄𝑢𝑎𝑟𝑎𝑛𝑡𝑖𝑛𝑒 (𝑡)), sets 𝑠 := 𝑄 , which constrains

traveller 𝑡 in quarantine, preventing infections.

6.2.3 Pattern Adaptation Results. Figure 6 shows the application of

the constraint pattern sent by the Control Unit to the transportation

network and population entities. This causes the network to restrict

the number of travellers allowed on a route at any given time. For

example, this may mean restricting the occupancy of buses.

The adaption starts when at least 10 infection cases have been

observed on the network at any time. This means that the disease

was able to replicate through the network unhindered for the first

few days of the simulation before the constraint pattern is activated.

The Control Unit decides to restrict the capacity of the network by

placing a constraint on the number of travellers at a location. Our

simulation does not allow travellers to move to the next location in

their journey if the maximum capacity is achieved.

Our analysis tests 𝑐𝑜𝑛𝑠𝑡𝑟𝑎𝑖𝑛𝑡 (𝑁, 𝑠𝑒𝑡𝐶𝑎𝑝𝑎𝑐𝑖𝑡𝑦 (𝑘 = {10, 5})), i.e.,
no more than 10 and 5 travellers are allowed through the edges

of the transportation network. When 𝑘 = 10, the results show

the number of infections peaking between 19 and 37 days, before

dropping low; with the epidemic lasting the full 100 days. When

𝑘 = 5, the travellers are further restricted from moving around the

network, thus the results show a lower number of daily infections.

6.3 Isolation
The isolation pattern allows the Control Unit to disable relation-

ships between entities. In our system, we isolate the vertices of the

transportation network, i.e., stopping all the connections.

6.3.1 Pattern Syntax. The syntax of the isolation pattern is of the

form 𝑖𝑠𝑜𝑙𝑎𝑡𝑖𝑜𝑛(𝑟 ), which takes as input a relation 𝑟 ∈ 𝑅 between

system entities such that 𝑅 ⊆ 𝐸𝑛𝑡𝑖𝑡𝑦 × 𝐸𝑛𝑡𝑖𝑡𝑦; the set of all entity
relationships.

6.3.2 Pattern Semantics. The isolation pattern invokes the disable
operation, disabling the relation 𝑟 ∈ 𝑅. In symbols,J𝑖𝑠𝑜𝑙𝑎𝑡𝑖𝑜𝑛(𝑟 )K𝑅 =

𝑑𝑖𝑠𝑎𝑏𝑙𝑒𝑅 (𝑟 ) such that the implementation of 𝑑𝑖𝑠𝑎𝑏𝑙𝑒𝑅 is determined

according to the relationship in 𝑅. This can involve simply setting

a Boolean-typed relation parameter; 𝑖𝑠𝐸𝑛𝑎𝑏𝑙𝑒𝑑 := 𝑓 𝑎𝑙𝑠𝑒 . For our

work, we use the 𝑠𝑒𝑡𝐶𝑎𝑝𝑎𝑐𝑖𝑡𝑦 constraint in Σ𝐾 to isolate routes

between vertex locations in the transportation network, such that

𝑖𝑠𝑜𝑙𝑎𝑡𝑖𝑜𝑛(𝑒) = 𝑑𝑖𝑠𝑎𝑏𝑙𝑒𝐸 (𝑒), for all edges 𝑒 ∈ 𝐸 and 𝑑𝑖𝑠𝑎𝑏𝑙𝑒𝐸 (𝑒) ≡
𝑠𝑒𝑡𝐶𝑎𝑝𝑎𝑐𝑖𝑡𝑦𝑒 (𝑘 = 0).

6.3.3 Pattern Adaptation Results. Figure 6 shows the impact on the

isolation pattern that implies disabling all edges of the transport

network (i.e., the capacity is set to zero). In our simulation, all

travellers are locked down into a vertex as any attempt to travel

means that the capacity would be exceeded. The pattern is activated

after 10 infection cases are detected, and results in a major reduction

of infections per day.

6.4 Influence
The influence pattern enables the Control Unit to interact with a

Influencer entity that affects the behaviour of a Target entity. In our

system, the Transportation Network switches modes of the journey

planner, and this impacts the Population.

6.4.1 Pattern Syntax. The syntax of the influence pattern is of the

form 𝑖𝑛𝑓 𝑙𝑢𝑒𝑛𝑐𝑒 : 𝐸𝑛𝑡𝑖𝑡𝑦 × 𝐸𝑛𝑡𝑖𝑡𝑦 ×𝐶 ∪ 𝐾 → 𝐸𝑛𝑡𝑖𝑡𝑦 which takes

as input a target 𝑡𝑎 ∈ 𝐸𝑛𝑡𝑖𝑡𝑦 entity, an influencer 𝑖𝑛 ∈ 𝐸𝑛𝑡𝑖𝑡𝑦, and
either a command or constraint 𝑎 ∈ 𝐶 ∪ 𝐾 such that the influence

pattern is the term 𝑖𝑛𝑓 𝑙𝑢𝑒𝑛𝑐𝑒 (𝑡𝑎, 𝑖𝑛, 𝑎) invoked by the Control Unit,
which sends the command or constraint 𝑎 to 𝑖𝑛 and changes its

parameters. In turn, the behaviour of 𝑡𝑎 is influenced by information

it receives from 𝑖𝑛.

6.4.2 Pattern Semantics. The influencer’s interpretation of the com-

mand or constraint defines the semantics involving the changes
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Figure 7: Influence pattern

of parameters. To specify the influence on the target, we define

the operation 𝑠𝑒𝑛𝑑𝑖 : 𝐸𝑛𝑡𝑖𝑡𝑦 × 𝐸𝑛𝑡𝑖𝑡𝑦 × 𝑃𝑖 → 𝐸𝑛𝑡𝑖𝑡𝑦 such that the

equation 𝑠𝑒𝑛𝑑𝑖 (𝜎𝑖𝑛, 𝜎𝑡𝑎, 𝑣) = 𝑠𝑒𝑡𝑖 (𝜎𝑡𝑎, 𝑣) means that the influencer

entity 𝑖𝑛 sends the parameter value 𝑣 to the target entity 𝑡𝑎, set-

ting 𝑝𝑖 := 𝑣 using the corresponding set operation. To define the

semantics of the influence pattern, we have the following cases

J𝑖𝑛𝑓 𝑙𝑢𝑒𝑛𝑐𝑒 (𝑡𝑎, 𝑖𝑛, 𝑎)K𝑖𝑛 (𝜎𝑖𝑛) =
{
𝑒𝑥𝑒𝑐𝑢𝑡𝑒𝑖𝑛 (𝜎𝑖𝑛, 𝑎) if 𝑎 ∈ 𝐶
𝑎𝑝𝑝𝑙𝑦𝑖𝑛 (𝜎𝑖𝑛, 𝑎) if 𝑎 ∈ 𝐾

to handle either commands in𝐶 or constraints in 𝐾 , with the direct

interaction 𝑠𝑒𝑛𝑑𝑖 (𝜎𝑖𝑛, 𝜎𝑡𝑎, 𝑣) between influencer 𝑖𝑛 and target 𝑡𝑎.

Using this definition, we specify the influence pattern

𝑖𝑛𝑓 𝑙𝑢𝑒𝑛𝑐𝑒 (𝜎𝑇 , 𝜎𝑁 , 𝑠𝑒𝑡𝑀𝑜𝑑𝑒 (𝑁,𝑚𝑜𝑑𝑒 = {safe, short})) (7)

whereby the target entities are travellers in 𝑇 who subsequently

receive journey plans that follow the operational mode of the jour-

ney planner. The command to change the journey planner’s𝑚𝑜𝑑𝑒

is activated immediately when received by the Control Unit. The

influence on the population determines delays, depending on when

future journey requests are received and how they are carried out

by individual travellers.

6.4.3 Pattern Adaptation Results. Figure 7 shows the application of

the influence pattern (7) sent by the Control Unit to the transporta-

tion network entity and influencing the population. This causes the

network to change the operational mode of the journey planner.

Adaptation starts at the beginning of the simulations. During

the early days of an epidemic, travellers are able to mostly avoid

infectious areas of the network; thus the safe mode succeeds in

reducing the number of daily infections. However, as the epidemic

continues, there are fewer risk-free locations in the network, mak-

ing avoidance difficult or impossible. The safe and short modes

therefore result in roughly the same number of infections past ap-

proximately 40 days into the epidemic. During our experiments,

we also observe that while the safe mode moved travellers to safer

parts of the network, it also contributes to the spread of the disease,

since infected travellers would also follow the safe travel plans.
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Figure 8: Pseudo-emergence pattern

6.5 Pseudo-Emergence
The pseudo-emergence pattern creates and deploys a pseudo-entity

to apply control. In our system, we consider the deployment of test

station pseudo-entities to apply medical testing to travellers and

activate quarantine in case of infection cases.

6.5.1 Pattern Syntax. The syntax of the pseudo-emergence pattern

is of the form 𝑝𝑠𝑒𝑢𝑑𝑜𝐸𝑚𝑒𝑟𝑔𝑒𝑛𝑐𝑒 : 𝐸𝑛𝑡𝑖𝑡𝑦 → 𝐸𝑛𝑡𝑖𝑡𝑦 which takes

as input a new pseudo entity 𝑒 ∈ 𝐸𝑛𝑡𝑖𝑡𝑦 to create, and a target

entity 𝑡𝑎 ∈ 𝐸𝑛𝑡𝑖𝑡𝑦 such that the pseudo-emergence pattern is the

term 𝑝𝑠𝑒𝑢𝑑𝑜𝐸𝑚𝑒𝑟𝑔𝑒𝑛𝑐𝑒 (𝑡𝑎, 𝑒) invoked by the Control Unit, which

creates the new pseudo entity 𝑒 in the system to send information

to the target entity 𝑡𝑎.

6.5.2 Pattern Semantics. The pseudo-emergence pattern creates

a new entity which can directly send information to the target

entity. The semantics of the pseudo-emergence pattern, is defined

as J𝑝𝑠𝑒𝑢𝑑𝑜𝐸𝑚𝑒𝑟𝑔𝑒𝑛𝑐𝑒 (𝑡𝑎, 𝑒)K, i.e., a new entity 𝜎𝑒 is created, and

there exists a direct interaction 𝑠𝑒𝑛𝑑𝑖 : 𝐸𝑛𝑡𝑖𝑡𝑦×𝐸𝑛𝑡𝑖𝑡𝑦×𝑃 → 𝐸𝑛𝑡𝑖𝑡𝑦

such that the equation 𝜎 ′𝑡𝑎 = 𝑠𝑒𝑛𝑑𝑖 (𝜎𝑒 , 𝜎𝑡𝑎, 𝑣) means 𝑒 sends the

parameter value 𝑣 to set in the target entity 𝑡𝑎, i.e., 𝜎 ′𝑡𝑎 (𝑣) = 𝑝𝑖 is
set using the corresponding set operation.

The term 𝑝𝑠𝑒𝑢𝑑𝑜𝐸𝑚𝑒𝑟𝑔𝑒𝑛𝑐𝑒 (𝜎𝑇 , 𝜎𝑡𝑠 ) specifies the pseudo - emer-

gence pattern such that it creates the test station pseudo-entity 𝑡𝑠 ,

defined with parameters 𝜎𝑡𝑠 = (𝑙), where 𝑙 is a location of 𝐺 . En-

tity 𝜎𝑡𝑠 is created in the PT system by setting the transportation

network entity parameter 𝑡𝑒𝑠𝑡𝑙 := 𝑡𝑟𝑢𝑒 . The test station is specified

by the predicate 𝑡𝑒𝑠𝑡 : 𝑇 → B such that 𝑡𝑒𝑠𝑡 (𝑡) = 𝑡𝑟𝑢𝑒 if traveller
𝑡 ∈ 𝑇 is infected with the disease, and 𝑓 𝑎𝑙𝑠𝑒 otherwise. In symbols,

𝜎 ′𝑡 = 𝑠𝑒𝑛𝑑𝑠 (𝜎𝑡𝑠 , 𝜎𝑡 , 𝑠) sets 𝜎 ′𝑡 (𝑠) = 𝑄 if, and only if, 𝑡𝑒𝑠𝑡 (𝑡) = 𝑡𝑟𝑢𝑒 .
Otherwise, the traveller 𝑡 ’s infection state 𝑠 is left unchanged.

6.5.3 Pattern Adaptation Results. Figure 8 shows the application
of the pseudo-emergence pattern 8 sent by the Control Unit to

the transportation network entity and placing two test stations

(e.g. due to budget limitations). The data series shows the result

of triggering the pattern after 10, 5, and 1 infection cases on the

network. Once the pattern is triggered, the Control Unit creates

a test station pseudo-entity at a vertex with the highest exposure

risk. The results of the graph show the importance of adaptation
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7

100

10 23

0.21

300 0.35

500 0.37

16

100

19 53

0.79

300 1.70

500 1.83

36

100

39 124

4.22

300 14.79

500 18.66

64

100

67 230

22.70

300 65.86

500 88.83

Table 2: Scalability of the Feedback Loop Workflow

occurring early in the epidemic. When the only infection case is

tested and quarantined, the epidemic stops. If adaptation is activated

after 5 cases, the epidemic has spread sufficiently to maintain an

epidemic throughout the simulation. A larger number of infections

is shown when adapting after 10 cases.

6.6 Scalability of the Feedback Loop
To assess the scalability of our technique, we run 100-day simula-

tions with different transportation network and population sizes.

We use a standard MacBook Pro machine with a 2.3 GHz Quad-Core

Intel Core i7 Processor and 16GB memory, and we collect the size of

the MDP model (i.e., the number of states and transitions), and the

simulation time, (i.e., the time, expressed in minutes), our approach

takes to analyse the considered scenario. Table 2 summarises our

results. The simulation time increases when considering larger net-

work and population sizes. We do get analysis results in less than

2 minutes when 500 travellers move in a network of 16 vertices

which seems to us a quite realistic scenario.

The canonical values in Equation (5) we set for the categories of

risk impact the running time of the simulation. This is due to simu-

lation of the Discrete-Time Markov Chain obtained from resolving

the non-determinism of the travel network’s MDP, to compute a

strategy. If the probability transitions to reach a success state are

low, then more time is needed to obtain the strategy. Our experi-

mental results show that the values used for RED, YELLOW and GREEN
in a synthesised Prism Module (2) a strategy can take two to three

seconds per traveller to obtain in networks with 64 vertices. We

cache the safest paths to be reused, but these must be reset after

each new health recommendation.

Lastly, CTMC model checking involving the SEIR compartment

model may be subject to the state explosion problem [21]. However,

this is mostly mitigated by performing SEIR model checking per

vertex, rather than across the entire population. We skip CTMC

model checking on vertices with no infectious travellers.

7 THREATS TO VALIDITY
Besides inheriting all limitations of design patterns and probabilis-

tic model checking research [18, 29], our approach exhibits the

following threats to validity [27]. External threats. We are aware

that the generalisation of results is not guaranteed since our formal

modelling and analysis techniques are applied to five design pat-

terns, and one case study has experimented. We intend to pursue

the adoption of a larger number of patterns to further systems as

part of our future research. Internal threats. Our work builds upon

our interpretation of design patterns defined in [14] and there might

be some biases. Moreover, the design of experiments might be crit-

ical, but we used numerical values to have a direct manipulation

of the experimental results of interest. To smooth this last point, it

is worth pointing out that models are publicly available [13] and

software engineers can easily change the numerical values of input

parameters and run further analyses that have been not consid-

ered. Construct validity. The statistical validity of the experimental

results is smoothed by running a probabilistic model checking anal-

ysis with a well-assessed tool (PRISM [16]), thus monitoring the

accuracy of presented numerical results.

8 RELATEDWORK
Within the adaptive and self-managing research communities, we

found the following contributions [6, 8, 28]. Fang et al. [8] predict

the violation of system-level disruptions and aim to support proac-

tive adaptation. We share the probabilistic model checking analysis,

but our work shows the different goal of triggering different pat-

terns of applied control inherited from the literature [14], thus

preventing the spread of epidemics. Barkowsky et al. [6] present

an approach to improve the computational effort when monitoring

systems through incremental queries that minimize the informa-

tion to extract from sensing the system’s evolution. We plan to

integrate this approach to improve the efficiency of our method-

ology when monitoring our transportation network. Besides, we

are also interested in pursuing the idea of adaptive analysis which

means balancing the effort of the analysis w.r.t. the actual impact

of the solution, e.g., labeling travellers if this indeed prevents the

spread of epidemics. Zeller et al. [28] consider a self-protecting layer

to protect systems against attacks targeting business logic rules.

We plan to make use of this approach to detect fake information

circulating in our public transportation system, thus preventing

an analysis that relies on manipulated (or outdated) data. When

considering broader research communities, we select the following

methodologies [20, 24, 25] as the most related ones. Silva et al. [25]

make use of the SIR epidemic model and investigate the adaptive

behaviour of the population that may not follow preventive instruc-

tions, given that actions are perceived as too restrictive. Similarly,

our patterns imply more/less invasive adaptation actions (e.g., the

constraint pattern limits the access to a path generating delays

in commuting, whereas the isolation pattern makes a connection

unaccessible) to decide how to prevent risky scenarios. Marchetti et

al. [20] also evaluate the trade-off between health outcomes and the

restrictiveness of mitigation strategies. Interestingly, the analysis

in [20] confirms that it is indeed valuable to act at early signs of

a surging wave and severe restrictions might be necessary. Fur-

ther parameters can be considered to detail the infection process,

e.g., vaccination coverage, and we plan to further play with the

parameters of our model to include more refined conditions. Qian

et al. [24] focus on the SEIR model and additionally consider the

travel contagion distinguishing different types of transportation

systems, e.g., private vehicles and metro stations. This represents an
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interesting direction for our model where the contagion parameter

can be modified based on such information. About adaptation, the

methodology in [24] includes a procedure of entrance screening,

i.e., identifying travellers with abnormal body temperature or pre-

senting relevant symptoms. Our approach is instead agnostic of the

health status of each traveller, the decision on adaptation actions

relies on the status of the travel network only, i.e., the probability

of having a certain number of infection cases. Summarising, to

the best of our knowledge, there exist complementary research

directions from which our paper may benefit, our work is novel in

adopting patterns of applied control to counteract epidemic flows

in the domain of public transportation systems.

9 CONCLUSION
This paper investigates the adoption of patterns of applied con-

trol defined in the self-adaptive community, and presents a novel

modelling and formal verification approach. Our results support

public authorities in making more informed healthcare decisions

during outbreaks and epidemics. We quantitatively compare differ-

ent adaptation strategies for a public transportation system, and

we provide formal guarantees on the number of infections.

There are several directions in which to take this work. First, we

plan to consider the travellers’ satisfaction as an additional goal

for our system and solve a multi-objective problem that balances

infection prevention and people’s willingness. Next, we plan to

develop a CAT pattern-based language to express and simulate

more complex adaptation scenarios. Lastly, we aim to develop a

user-friendly visualisation tool to enable healthcare domain experts

to simulate a wider range of scenarios.
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