
1

Autoscaling Solutions for Cloud Applications
under Dynamic Workloads

Giovanni Quattrocchi, Emilio Incerto, Riccardo Pinciroli, Catia Trubiani, Luciano Baresi

Abstract—Autoscaling systems provide means to automatically change the resources allocated to a software system according to the
incoming workload and its actual needs. Public cloud providers offer a variety of autoscaling solutions, ranging from those based on
user-written rules to more sophisticated ones. Originally, these solutions were conceived to manage clusters of virtual machines, while
more recently, they have also been employed in the operation of containers. This paper analyses the autoscaling solutions provided by
three major cloud providers, namely Amazon Web Services, Google Cloud Platform, and Microsoft Azure, and compares them against
two solutions we develop based on control theory (ScaleX) and queuing theory (QN-CTRL). We evaluate the different approaches
using both an in-house simulation engine and cloud deployments by feeding them with various synthetic and real-world workloads. Our
extensive evaluation collects both simulation results and real measurements by which we can assess that both ScaleX and QN-CTRL
outperform industrial techniques in most cases when considering the trade-offs between the service-level-agreement (SLA) violations
and the optimal usage of resources.

Index Terms—autoscaling, elastic computing, cloud computing, containerization, containers, control theory, optimal control

F

1 INTRODUCTION

Software systems are increasingly sophisticated, and
they frequently need to handle a wide range of dynamic
workloads while maintaining a set service quality [1], [2].
As a result, system scalability is extremely important, and
computational resources should be allocated as needed [3],
[4], [5]. Provisioned resources should, ideally, match the
intensity of dynamic workloads to be served and avoid both
underprovisioning (i.e., resources are not enough to handle
the workload) and overprovisioning (i.e., resources are more
than needed) scenarios [6], [7].

Nowadays, cloud computing provides different means
to change and provision resources to an application up to
a theoretically infinite upper-bound [8]. These means lead
to autoscaling systems. They were originally conceived for
clusters of virtual machines (VMs), and users were in charge
of defining the rules that change cluster sizes (i.e., horizontal
scalability). VMs are “slow” to boot, scale, and manage,
and thus limit the efficiency of autoscaling mechanisms that
can only operate at low frequency. The autoscaling systems
dedicated to VMs offered by Cloud providers are usually
focused on horizontal scalability (adding/removing VMs),
while their vertical scalability (resource configuration of an
existing VM) is almost unexplored1.

Compared to VMs, containers [9], i.e., a lightweight
virtualization technology, are quicker to boot and manage.

• G. Quattrocchi and L. Baresi are with Dipartimento di Elettronica,
Informazione e Bioingegneria, Politecnico di Milano, Milan, Italy.
E-mail: {name.surname}@polimi.it

• E. Incerto is with IMT School For Advanced Studies Lucca, Lucca, Italy
E-mail: emilio.incerto@imtlucca.it

• R. Pinciroli and C. Trubiani are with Gran Sasso Science Institute (GSSI),
L’Aquila, Italy. E-mail:{name.surname}@gssi.it

1. To the best of our knowledge, Google and Amazon Web Services
do not offer means to vertically scale VMs. Microsoft Azure supports
this feature, but modifications must be applied to a pool of VMs and
changes must be applied to all the VMs at the same time.

They provide means to quickly start new replicas in a few
seconds, and to (partially) reconfigure provisioned resources
at runtime in hundreds of milliseconds [10]. Containers can
be run on bare-metal machines or on VMs to allow for
multiple processes to share resources in a controlled way
and without a significant overhead [11]. This motivates the
usage of containers thus enabling faster and finer-grained
autoscaling capabilities, compared to VMs, and allowing
for the management of rapid changes and fluctuations of
dynamic workloads [12], [13]. As for VMs, industrial ap-
proaches focus on the horizontal scalability of containers.

Public cloud providers allow users to directly manage
both VMs and containers and also offer diverse autoscaling
capabilities, either built-in or added by external orchestra-
tors (e.g., Kubernetes [14]). Although these solutions are
largely adopted by industry [15], they are based on rules
that are defined by users or heuristics and they may en-
counter sub-optimality (i.e., violation of requirements due
to under-provisioning, or high costs for over-provisioning).

This paper analyses these autoscaling solutions and fo-
cuses on those provided by the three major cloud providers:
Google Cloud Platform, Amazon Web Services (AWS), and
Microsoft Azure. In a continuous effort to foster the usage
of theoretical-based autoscaling solutions, we propose an
extensive comparison among industrial autoscalers and two
novel approaches that we build on top of our previous work:
ScaleX (initially conceived in [16], and extended here), which
is based on control theory [17], and QN-CTRL (based on a
symbolic solution of software performance models [18], and
newly combined with optimal control in this manuscript),
which is based on queuing theory [19]. While industrial
solutions and most of the work in the literature focus on the
horizontal scalability of VMs and containers, the main nov-
elty of our approaches is that they exploit vertical scaling to
allow containers to reconfigure allocated resources almost
instantaneously [10].

2

Name Providers Description

Rule-based AWS, Azure A solution that relies on user-defined rules, triggering scaling actions when set conditions are met,
such as when CPU utilization crosses a certain threshold.

Step AWS An evolution of rule-based solutions, enabling users to associate specific conditions with multiple
scaling actions (or steps), thereby offering more fine-grained control over resource allocation.

Target AWS, GCP Advanced scaling solution that automatically maintains a target metric value by adding/removing
instances without requiring users to write complex rules or policies.

Others AWS, Azure, GCP Proactive approaches that are complementary to rule-based, step, and target solutions. They work
on larger time spans and may involve long-lasting pattern analysis of the workload.

TABLE 1: Summary of the main autoscaling solutions provided by popular public cloud providers.

Our empirical evaluation, carried out on both simulated
and cloud-based environments, shows how the proposed
techniques are able to outperform industry solutions by
both minimizing response time violations and allocating
fewer resources under a variety of synthetic and real-
world workloads. The comparison also includes an in-depth
sensitivity analysis of ScaleX and QN-CTRL, which allows
highlighting of important trade-offs.

To summarize the contributions of this article are i) a
survey of the existing, industry-provided autoscaling mech-
anisms, ii) two novel autoscaling solutions, i.e., ScaleX and
QN-CTRL, iii) an open-source and extendable simulation
engine for autoscaling mechanisms, and iv) an extensive
comparison of the different solutions based on the afore-
mentioned simulator and on executions in the AWS cloud.

The rest of the manuscript is organized as follows.
Section 2 discusses industrial solutions. Sections 3 and 4
provide details on ScaleX and QN-CTRL, respectively. Sec-
tion 5 presents simulation- and cloud-based experiments,
and reports on the assessment we carried out. Section 6
surveys related work and Section 7 concludes the article
with future research directions.

2 INDUSTRIAL APPROACHES

This section provides an overview of the main autoscal-
ing systems available on cloud providers. We consider the
solutions implemented in Google Cloud Platform (GCP),
Amazon Web Services (AWS), and Microsoft Azure, three
of the main public cloud providers. Table 1 summarizes the
main solutions and highlights their characteristics.

These systems exploit the horizontal scalability of either
VMs or containers, while the vertical scaling in industrial
approaches is still in its early days.

The control period of an autoscaling system is capped
by the speed of actuation, i.e., the time it takes to complete
a scaling action. While VMs take around one minute to
be fully started or terminated in the three cloud providers
analyzed, containers are faster and are bootstrapped in a
few seconds. Re-configuring a container using vertical scal-
ability is almost instantaneous (hundreds of milliseconds on
average) [10].
Rule-based. AWS and Azure provide autoscaling mech-
anisms based on rules, known as simple scaling in AWS
[20] and AutoScale in Azure [21]. Typically users define a
constraint on a given metric (e.g., CPU utilization < 80%)
and, when it is violated, a scaling action is triggered (e.g.,
adding a VM). In AWS this approach is based on Cloud-
Watch, i.e., the AWS monitoring system. CloudWatch allows
users to observe the fluctuations of a set metric. Metrics in
CloudWatch are either infrastructural (e.g., CPU utilization)

or custom and provided by the user. Metrics are continu-
ously collected and a data point is created by aggregating
over a time window (usually 1 or 2 minutes). CloudWatch
provides means for defining alarms when a threshold of the
set metric is reached. Similarly, Azure Monitoring allows
users to observe different metrics and trigger alarms.

When the alert is triggered, a so-called policy is executed.
A policy can add or remove a given amount of VMs (e.g.,
+3 VMs) or proportionally to the current size (e.g., +20% of
running VMs).

When an action is triggered, the autoscaling mechanism
remains idle for a so-called cool down period (default is 180
seconds) so that the system stabilizes after executing the
action. This way, different and possibly conflicting actions
do not overlap.

In addition to the rule-based approach available for VMs,
AWS provides a similar autoscaling system for containers in
its dedicated container-as-a-service solution (ECS). Instead,
other providers rely on Kubernetes for container orches-
tration which uses a different type of logic (i.e., target) for
scaling containers, as explained in the following.

Step. Step scaling is provided by AWS [20] and it is
an evolution of the rule-based approach. This mechanism
allows users to provide a policy table to define the scaling
actions to be carried out when certain conditions are met. In
particular, for a CloudWatch alert, users define the amount
or percentage of VMs/containers that should be added
or removed when differences in metrics are observed. For
example, Table 2 shows how a user can specify step scaling
rules based on CPU utilization (i.e., metric UCPU).

Step scaling requires the definition of a warm-up time
(and not a cool-down period), i.e., the time to wait before
considering a VM launched or terminated. This way, multi-
ple policies can be executed consecutively, but their effect is
taken into account only after a set amount of time.

Target. AWS [22] and GCP [23] offer a more advanced
scaling technique that does not require users to write “com-
plex” inputs (such as rules or policies) but only needs to
define a target value for a given metric. In this case, the
goal of the autoscaling system is to keep the metric as close
as possible to the target value by adding/removing VM

Values Action
UCPU > 90% +20%VMs

80% < UCPU ≤ 90% +15%VMs
70% < UCPU ≤ 80% +10%VMs
20% < UCPU ≤ 30% −20%VMs
30% < UCPU ≤ 40% −15%VMs
40% < UCPU ≤ 50% −10%VMs

TABLE 2: Examples of step scaling rules.

3

instances. Both AWS and GCP do not disclose the algorithm
behind this technique. Cool-down and warm-up periods are
used to keep the system stable and to avoid overlaps in
action executions.

A similar approach is provided by Kubernetes, a popular
container orchestrator, that is offered as-a-service by AWS,
GCP, and Azure. Kubernetes uses target scaling for man-
aging container instances through a dedicated component
called Horizontal Pod Autoscaler (HPA) [24].

HPA computes the number of container instances (ci)
needed to meet the target value (tm) for a given metric. ci
is computed proportionally to the ratio between the current
monitored metric value (cm) and tm: ci = ceil(ci ∗ cm/tm).

The new replicas are created (if needed) only if cm/tm
is greater than a given threshold (default value is 0.1).
Containers are much faster to be booted and managed
compared to VMs, thus, HPA computes the new allocation
every 30 seconds (control period). A so-called stabilization
period (default 5 minutes) is waited after a new value of ci is
computed and enacted.

Kubernetes also offers a similar approach based on ver-
tical scaling (VPA) [25] of CPU and memory. This approach
is still in beta2 and does not provide in-place vertical scal-
ing since containers must be restarted to be reconfigured.
Containers are also not scaled independently and all the
replicas must be reconfigured in the same way. Moreover,
the integration with HPA and JVM-based containers is not
fully supported.

Others. AWS [26], Azure [27] and GCP [28] provide
scheduled scaling, that is the ability to set time triggers for
executing a scaling action. For example, users can schedule
to increase VMs during the weekend and decrease them on
Monday. Predictive scaling, provided by AWS [29], is an evo-
lution of this approach: it analyzes the workload patterns of
the previous 14 days, calculates the required VM allocation
for the next 2 days, and automatically computes scheduled
scaling actions accordingly. The algorithm behind this ap-
proach is not disclosed. Scheduled and predictive schedul-
ing can be seen as complementary proactive approaches to
rule, step, and target scaling (reactive). The former produces
long/mid-term actions, while the latter can quickly respond
to unexpected changes in the execution environment. In the
rest of this work, we focus on reactive approaches being
them necessary when the execution environment (including
the dynamicity of workloads) is not fully predictable.

3 ScaleX
ScaleX is our control theoretical autoscaling system. Its
lightweight, hierarchical architecture allows one to manage
container-based systems with extremely fast control loops
by exploiting in-place vertical scaling which is the ability
to reconfigure computing resources allocated to a system
without the need to add, remove, or restart any component.

The scaling mechanism of containers is based on a fea-
ture of the Linux kernel called cgroups, which allows for
(re)configuring at runtime CPU cores and memory. Cores
can be allocated using either CPU shares, CPU reservation,
or CPU quotas. Shares enforce a limit to the CPU allocated

2. https://github.com/kubernetes/autoscaler

to each container only in case of resource contention, while
reservations let users pin single cores to a given container
(exclusive use). Instead, ScaleX uses quotas since they set a
hard limit on resource usage and cores can be allocated with
decimal precision. Memory can be allocated to containers in
a hard or soft way. The former sets a strict upper bound to
usable memory; the latter gives more freedom.

ScaleX unlocks the speed of container management by
featuring a lightweight design. Each container is managed
by an independent controller that continuously reconfigures
allocated resources. Given that ScaleX supports multiple
containers (i.e., different applications) running on the same
machine, the sum of allocated resources may exceed avail-
able capacity. ScaleX does not employ any synchronization
mechanism but provides an additional heuristic-based con-
troller, i.e., the Supervisor, deployed on each machine. This
component gathers the allocations computed by the con-
trollers, and before enacting them, it scales them (if needed)
proportionally to prevent resource contention. The Super-
visor can be customized to accommodate non-proportional
heuristics so that the most demanding applications can be
prioritized in case of contention.

ScaleX uses lightweight Proportional-Integer (PI) con-
trollers that are able to compute the next state of the
system (i.e., the next resource allocation) in constant time,
allowing for the aforementioned fast control period. Our PI
controllers are grey-box meaning that they embed a charac-
teristic function describing the dynamics of the controlled
system. This function captures only the main behavior of
the system and we rely on the PI feedback loop for runtime
adjustments.

We have developed PI controllers for microservices [30],
serverless functions [31], big-data batch applications [13],
and GPU-accelerated machine learning applications [32].
The goal of all of these controllers is to guarantee that
the response time does not exceed a set threshold while
efficiently allocating resources. Each system shares the con-
trol architecture presented in Section 3.1 and, at the same
time, considers the unique characteristics of each system.
For example, in our work related to big-data applications,
the response time is not computed as an aggregation of
several (almost instantaneous) requests but, since execution
may last minutes or hours, each single request is controlled
and the requirement on its response time is considered a
”deadline”, that is the maximum allowed time to finish that
specific execution.

Although the version of ScaleX presented in this paper
focuses on vertical autoscaling only, it can easily interface
with horizontal autoscaling mechanisms. Indeed, while each
PI controller manages a single existing container, ScaleX
computes significant indicators of the performance of each
component. These values can be used by horizontal au-
toscaling systems (e.g., Kubernetes HPA) for allocating more
containers and/or machines.

Unlike heuristic-based approaches (e.g., all the industrial
ones described in Section 2), control-theory provides some
key formal guarantees on the control carried out [17], [33].
In particular, stability defines the ability of the system under
control to reach a set point and to remain in its neigh-
borhood. Settling time describes the pace of the system in
converging to a stable point. Maximum overshooting captures

https://github.com/kubernetes/autoscaler

4

Fig. 1: Control architecture of ScaleX.

the maximum difference between the set-point and the
measured controlled variable (e.g., the monitored response
time). Finally, steady-state error is the difference between the
value reached at steady-state and the set-point.

3.1 Control Architecture
Figure 1 depicts the control architecture of ScaleX. Each
container C (the controlled system) is deployed along with
a dedicated PI controller given the defined application type.
For each application/container, users provide a set-point,
that is a target response time (τ◦C), similarly to the target
controllers described in Section 2.

At runtime, unknown disturbances (D) affect the con-
tainer’s response time (τC), which is monitored together
with other metrics (M). At each control step (1 second), the
controller computes the error ε, defined as the difference
between τ◦C and τC . Then it computes a resource allocation
for the container uC by using the error and M so that,
ideally, τC = τ◦C .

Each controller on a machine m transfers to the Super-
visor the computed uC that aggregates all the allocations in
a vector3 Ūm, and, if needed, computes a feasible resource
allocation u′C for each container according to a specified pol-
icy (e.g., proportional, priority-based, requirement-based).
Moreover, if the sum of to-be-allocated resources is lower
than the capacity of the machine, the supervisor can (op-
tionally) scale up the allocations to speed up applications’
performance at the expense of a sub-optimal allocation
(over-provisioning).

Before enacting the computed u′C on each container, the
supervisor produces two indicators: RM and R̄A, that are,
respectively, the saturation level of the machine and the
needs of each application running on it.

The complexity of the control loop is constant (in time
and space), and no synchronization among different con-
trollers is necessary thanks to the highly distributed and
hierarchical architecture of ScaleX. This is key to allow
for very short control periods (e.g., 1 second) even when
controlling large-scale systems.

4 QN-CTRL
QN-CTRL is the novel optimal autoscaler for containerized
applications that we propose in this paper. Its objective
is similar to that of ScaleX, i.e., to determine the compu-
tational resources required by application containers for

3. A variable super-scripted with a bar is a vector.

QN Model Optimal
Controller

ContainerQN Estimator

Machine Level

Container Level

Historical Data

Fig. 2: Control architecture of QN-CTRL.

meeting performance requirements under highly variable
workloads. As the objective of the two controllers is similar,
so is how they interact with the controlled containers. After
the computation of each new allocation, QN-CTRL trans-
lates it into proper actuation signals via the Linux cgroups
interface (i.e., through the period and the quota parameters)
or the chosen container engine (e.g., Docker). QN-CTRL
is based on two main components: i) an automatically
generated queuing network (QN) model of the system, ii)
an efficient optimization problem. At each control loop, the
optimization problem is solved to compute the minimum
amount of CPU quota required by the container to reach
the desired service level objective under the measured load.
In addition, the QN model is updated in a moving horizon
estimation fashion, taking into account past measurements
of response time and the system load (the output and input
from the previous phase, respectively). By doing so, QN-
CTRL keeps its performance model always up-to-date with
the recent behavior of the system.

The main difference between ScaleX and QN-CTRL is
in the architecture of their control loops. As presented in
Section 3, ScaleX is hierarchical: each container is equipped
with an independent PI controller and a supervisor ensuring
compliance with the computational limits of the platform.
This way, ScaleX prioritizes controller efficiency (i.e., algo-
rithmic complexity) over the quality of the computed alloca-
tions. In contrast, QN-CTRL uses a centralized approach and
calculates the allocation for all containers simultaneously
through a single optimization problem that also takes into
account the constraints imposed by the platform. As a result,
QN-CTRL favors the precision of the allocations over their
computational complexity. However, the formulation of the
control and estimation problem as a nonlinear local opti-
mization makes QN-CTRL very efficient even for hundreds
of variables and constraints [34] (i.e., in the experimentation
of Section 5, QN-CTRL takes few milliseconds for both the
model estimation and optimal allocation computation). In
the following, we detail QN-CTRL and its estimator.

4.1 Control Architecture

Figure 2 depicts the architecture of QN-CTRL on a machine
with M containers where, NNNk = (Nk,i)1≤i≤M is the vector
of sampled load (i.e., number of users) for each container i
at time k, τττo = (τoi)1≤i≤M is the vector of desired service
level objective, uuuk = (uk,i)1≤i≤M is the vector of optimal
allocation, τττk = (τk,i)1≤i≤M is the vector of measured

5

response time and θ̂̂θ̂θk = (θ̂k,i)1≤i≤M is the vector of the
QN’s model parameters for container i at time instant k.

The key ingredient of QN-CTRL is an efficient steady-
state solution [18], [35] of a closed QN model [19]. It al-
lows predicting the system’s key performance indices (i.e.,
response time, throughput, and utilization) as a function
of the number of active users, CPU cores, and container’s
service time (i.e., the average time required for the container
to execute a request when there are no queuing phenom-
ena). Then the QN solution is encoded in a nonlinear opti-
mization problem (i.e., the optimal controller of Figure 2)
that is solved at runtime to compute the CPU capacity
(i.e., uuuk). Such capacity value is required by the controlled
container to achieve the desired performance objective (i.e.,
the user-defined target response time τττo). Finally, to create
an optimal autoscaler that is effective and easy to use in
practice, we equipped QN-CTRL with a QN model estimator
(the QN estimator box of Figure 2) suitable to calibrate the
performance model. The technical details of the different
components of QN-CTRL are discussed in the following.

4.2 Efficient Steady-state Solution of Closed QNs

QNs are a family of stochastic models widely used in
software performance engineering [36], [37]. Their essential
idea is to model the traffic of customers/jobs that are routed
across different services (i.e., stations) and compete for a
limited pool of computational resources. To model paral-
lelism, each station is composed of multiple, independent,
and identical servers (e.g., the thread concurrency levels
for software resources or multiple cores for hardware re-
sources). Service times are described by a probability dis-
tribution, where a commonly used one is the exponential
one. In any case, the proposed optimal control approach
is easily extensible to a more general class of service time
distributions (i.e., the Coxian one that can approximate
any given general distribution arbitrarily closely [38]), as
already partially done in [18]. A QN may be closed or
open depending on whether or not a fixed population of
customers remains within the system. In this work, we focus
on closed QNs with a multiple class of users, i.e., with each
class, we model the performance of co-located containers
and how they affect each other. Finally, a multi-class think
station is used to model the incoming request rate to the
services provided by the system.

Following the mathematical notation already adopted
in [18], [39], [40], a QN is formally specified by a set of
multi-class think and service stations denoted by N =
{0, 1, . . . , n} and by the following parameters:

• µi,c denotes the server multiplicity (i.e., number of
CPU cores) assigned to class c at the i-th station, with
i ∈ N ; the total number of cores available in station
i is equal to

∑M
c=1 µi,c where M is the number of

classes deployed on that station (e.g., the number of
containers sharing the same machines).

• ei,c is the average value of the exponentially dis-
tributed service time of service class c at the i-th
station, with i ∈ S;

• Cc is the total number of clients of class c simultane-
ously interacting with the system.

Containerized ApplicationsThink Station

Fig. 3: QN model of M containerized application within
QN-CTRL autoscaler. We denotes with ttt = (tc)1≤c≤M ,
eee = (ec)1≤c≤M , µµµ = (µc)1≤c≤M , CCC = (Cc)1≤c≤M the vectors
of think times, service times, CPU quotas, and class users,
respectively.

• tc is the average value of the exponentially dis-
tributed think time between two subsequent requests
to service class c;

The performance dynamics of M co-located container-
ized applications within QN-CTRL is modeled by following
the scheme depicted in Figure 3. In particular, we model the
different applications through a single multi-class station
(i.e., with M classes) that represents the computational
load induced by the corresponding users (i.e., Cc). Since
we adopted a closed QN model, upon completion, a user
waits for an exponentially distributed delay before sub-
mitting a new request to the system. Section 5 will show
how this modeling choice allows to effectively control real-
world applications. Indeed, the reported numerical results
demonstrate the benefit of the QN estimator in tuning the
model at runtime to resemble the performance behavior of
different co-located applications with high fidelity.

Grounded on the theoretical foundation reported in [35],
the equations that allow computing the key performance
indices (i.e., response time and throughput) of the QN
model described in Figure 3 are defined. Eq. (1) reports
the mathematical expressions for the steady-state (i.e., in the
long-run) performance indices of service class c:

Xc = min(
Cc

tc + ec
,
µc
ec

) and Tc =
Cc
Xc
. (1)

As expected, the throughput of the c-th class, i.e., Xc in
Eq. (1), is strongly influenced by the number of cores
available for that application and by the number of its
clients Cc. Finally, the steady-state response time (i.e., Tc)
can be calculated through Little’s law [19] which relates the
number of clients with the corresponding throughput. In the
following, we use these equations to create the QN-CTRL
optimal autoscaler and the QN Estimator.

4.3 Autoscaler Formulation

The definition of the QN-CTRL optimal autoscaler goes
through the encoding of Eq. (1) in a nonlinear optimization
problem able to compute, at runtime, the number of CPU
cores (i.e., uc, 1 ≤ c ≤ M) needed to achieve the desired
value of response time (i.e., T oc) for service c when Cc clients
are simultaneously interacting with the system. Eqs. (2)–(6)
depicts the formulation of the aforementioned optimization
problem.

6

minimize
uc

C∑
c=1

|Tc − T oc | (2)

subject to:

Xc = min(
Cc

tc + ec
,
µc
ec

) (3)

Tc =
Cc
Xc

(4)

0 ≤ uc ≤ ūc (5)
with 1 ≤ c ≤M

M∑
c=1

ui,c ≤ ū (6)

In particular, through Eqs. (3) and (4), we encode the
performance behavior of all the controlled containers as a
constraint of the optimization problem. With the objective
function, i.e., Eq. (2), we drive the selection of the number
of servers to ensure that the application’s response time is as
close as possible to the desired one, i.e., by minimizing the
absolute value of the error between the reference value T oc
and the one computed by Eq. (4) while minimizing the total
number of allocated cores. Equation (6) concludes QN-CTRL
optimal autoscaler by enforcing that the sum of the CPU
quotas assigned to each container (i.e., to each service class
c) is less or equal to the available CPU cores on the hosting
machine (i.e., ū). We remark that to make the optimization
problem as efficient as possible, in the experimentation of
Section 5, we substitute the minimum function of Eq. (3)
with its smooth approximation [41].

4.4 QN Estimator formulation

minimize
ec

W∑
i=1

|Ti,c − T mi,c | (7)

subject to:

Xi,c = min(
Ci,c

ti,c + ec
,
µi,c
ec

), 1 ≤ i ≤W (8)

Ti,c =
Cc
Xi,c

, 1 ≤ i ≤W (9)

The QN Estimator is defined as an optimization problem,
i.e., via the encoding of Eq. (1). However, unlike Eqs. (2)–
(5), the inputs and outputs are reversed, i.e., the number
of cores uc is a measured variable while the service time
(i.e., ec) is the decision variable. Indeed, the goal of the
estimator is to compute the parameters of the QN model
of Figure 3 starting from the last W samples of response
times, number of servers, and number of clients (i.e., the QN
model used by QN-CTRL at control step t is estimated by
using the information collected in control steps from t−W
to t − 1). For estimating the think times ti,c we considered
the difference between the completion and arrival times
of two consecutive requests for service class c made by
the same user. Considering that for estimation purposes
the optimization problem of each container can be solved

in parallel (i.e., no joint constraints are enforced), below
we present the estimator focusing on the single container
c. The extension to the multi-container case is achieved
by duplicating M times the optimization problem (7)–(9)
solved with the data corresponding to the container under
estimation.

Eqs. (8) and (9) encode the response time of the QN
model to be estimated as a function of its unknown service
time (for doing so, we use the last W measured number of
cores ui and number of clients Ci with t −W ≤ i ≤ t − 1).
The estimator is completed by the objective function (7),
which steers the service time to be the one that minimizes
the absolute error between the response times calculated
in (8)–(9) and the measured ones (i.e., T mi,c). The accuracy
of our QN estimator is evaluated in terms of the achieved
SLA, as usually done for tuning classical controllers [42].
Section 5 reports a similar strategy to determine the ScaleX
parameters used in the numerical evaluation, and QN-CTRL
provides evidence of satisfactory results across different
applications and workloads.

Combining the techniques presented in Sections 4.3
and 4.4, we formulate an efficient optimal autoscaler that
adapts to different applications by estimating the corre-
sponding QN-based performance model at runtime.

5 EVALUATION

This section presents a comprehensive comparison of differ-
ent autoscaling solutions for containerized applications per-
formed in simulated and cloud environments (AWS cloud).
Simulation provides a controlled environment tailored to
application service time and control signal actuation. Cloud-
based experiments, instead, allow one to assess techniques
with applications executed in realistic environments. In both
cases, we compare the industrial approaches presented in
Section 2 against ScaleX and QN-CTRL whose implementa-
tion is discussed in the following.

Autoscaling Systems. We analyze and compare the
number of violations and allocated cores of 8 autoscaling
solutions dedicated to containers.

• Static (1) —available in AWS, GCP, and Azure: we
only allocated one core independently of the ob-
served workload and its intensity;

• Rule-based (+1) —available in AWS and Azure: We
define the following rules:

response time > 0.9 ∗ SLA +1 core
response time < 0.5 ∗ SLA −1 core

• Rule-based (+3) —available in AWS and Azure: We
defined rules similar to those above, but we add/re-
move 3 cores when triggered;

• Step —available in AWS: We defined the following
steps:

response time ≥ 1.3 ∗ SLA +30% cores
SLA ≤ response time < 1.1 ∗ SLA +20% cores
0.9 ∗ SLA ≤ response time < SLA +10% cores

response time < 0.8 ∗ SLA −10% cores

• Target —available in AWS and GCP: We exploited
Kubernetes’ HPA (the only available algorithm);

7

• TargetFast —available in AWS and GCP: We started
for the above implementation and adopted a faster
control period;

• ScaleX, the solution presented in Section 3;
• QN-CTRL, the approach presented in Section 4.

As explained in Section 2 most of the available tech-
niques exploit horizontal scalability that requires longer
actuation times compared to vertical scaling (employed by
ScaleX and QN-CTRL). For this reason, we configure all
the industrial approaches, except TargetFast, with a control
period of 30 seconds, i.e., the default value of multiple so-
lutions (e.g., Kubernetes HPA), while ScaleX and QN-CTRL
are set with a control period of 1 second to properly exploit
vertical scaling capabilities. Being Target the most evolved
and wide-spread solution among industrial approaches, we
also considered a “fast” version of the approach (control
period 1 second), namely TargetFast, that can be employed
to scale containers vertically (e.g., Kubernetes VPA). All
industrial approaches are configured with no cool-down
and warm-up periods so that they are able to scale up
and -down resources as fast as possible since we assume
an immediate actuation (e.g., in-place reconfiguration of
containers).

5.1 Simulation-based experiments
To enable and ease the comparison of different autoscaling
solutions in a controlled environment, we developed a sim-
ulator called RAS4 (Resource Allocation Simulator).

RAS is a lightweight simulation environment written in
Python, that allows mocking different autoscaling solutions,
workloads, and applications. It comes with a library of
existing components but developers can easily customize
them and conceive new ones. In particular, RAS provides
three main interfaces, Generator, Controller, and Application,
plus a Runner class. The Generator aims to abstract the
workloads used for the experimentation (i.e., they map a
number of users to each simulated time-instant according to
the chosen load function). The Controller exposes a control
method that returns a CPU allocation for each control time
instant and workload intensity. The Application interface
abstracts the logic necessary to calculate the application
response time as a function of the number of users and
the cores computed by an instance of Controller. The Runner
class coordinates the components of RAS: it determines the
progress of the simulation, generates the control events,
and collects the measurement points. Thanks to this class
hierarchy, new autoscaling scenarios are easily implemented
by providing the appropriate concrete implementation of
the interfaces mentioned above and by using the runner
provided by RAS. Applications, workloads, and autoscaling
solutions described in the following are implemented with
these means.

Applications. We compare the autoscaling solutions us-
ing two applications that are based on two different re-
sponse time models. These models assume: (i) the behavior
(i.e., response time) of the considered system depends on

4. The source code and the replication data of the simulated
and cloud-based experiments are available at https://github.com/
deib-polimi/RAS and https://github.com/deib-polimi/RAS-real, re-
spectively.

the load intensity (i.e., number of requests to process) and
on the number of allocated resources (i.e., CPUs or cores);
(ii) other system resources (e.g., memory) are scaled propor-
tionally to CPUs and are always sufficient when CPU-bound
applications are considered, as in our case.

The model in [30] (hereinafter AppDet) considers re-
quests with a deterministic service time and defines the
response time as a function that decreases monotonically
as the number of cores increases, whose minimum value
is constrained by a lower bound to which the response
time tends when all requests of the application are served
concurrently by the available cores. The model defines the
response time as:

RT = (1 + ν) · (c1 + c2) · req + c1 · c3 · cores
req + c3 · cores

, (10)

where req is the number of requests to serve, cores is the
number of available CPUs to process the requests, and c1,
c2, c3 are obtained through profiling. For this evaluation
we used c1 = 0.00763, c2 = 0.0018, and c3 = 0.5658 as
in [30]. We add a noise, ν ∼ Unif(−0.1, 0.1), i.e., ±10%
disturbance, to the model presented in [30] to consider
interference among requests.

The other model (hereinafter AppExp) is a recursive
technique (Mean Value Analysis, MVA [43]) that analytically
derives the performance metrics (e.g., average response
time) of a closed QN with a low computational cost [44]
and assumes all requests are processed with an exponential
service time. MVA and its approximations are widely used
in the literature to study the performance of various real-
world systems, e.g., Industry 4.0 warehouse automation
[45], Apache Cassandra [46], cloud applications [47].

Workloads. Autoscaling solutions are evaluated with
synthetic and real-world workloads whose characteristics
are summarized in Table 3. The load intensity (i.e., the
number of requests to process) depends on time, req(t),
and is defined by different workload types. Sine (SN1 and
SN2) is a periodic workload that follows a sine function;
Stair (ST1 and ST2) is a workload whose intensity varies
between two values (e.g., low and high) instantaneously
(impulse like); Ramp (RP1 and RP2) increases/decreases
linearly up to a given value where it stabilizes. These are
synthetic workloads whose shapes are typically used to test
(and stress) control systems at design time; they are meant
to capture the main characteristics of real-world workloads
(e.g., a Stair workload captures an abrupt increase in the
system load) [48], [49]. Twitter (TW) is a publicly available
real-world trace [50] that collects the number of tweets
submitted every second on January 1st, 2021. It is used in
the literature, e.g., to study the performance of frameworks
for machine learning inference requests [51].

Service-level Agreement (SLA). To analyze and com-
pare the autoscaling solutions, we set the SLA to 0.6 sec-
onds, i.e., requests must be served within the given time to
avoid SLA violations. For target/set-point based solution, a
common strategy to make the system meet the SLA is to use
a target response time lower than the SLA [52]:

TargetRT = α · SLA, with 0 < α ≤ 1. (11)

https://github.com/deib-polimi/RAS
https://github.com/deib-polimi/RAS
https://github.com/deib-polimi/RAS-real

8

Name Type Description
SN1 Sine req(t) = 500 ∗ sin(t π

100) + 700
SN2 Sine req(t) = 1000 ∗ sin(t π50) + 1000
ST1 Stair req(t) = 1000 ∗ (1 + floor(t/100))
ST2 Stair req(t) = 5000 if 50 ≤ t < 800 else req(t) = 50
RP1 Ramp req(t) = 10t if t < 800 else req(t) = 8000
RP2 Ramp req(t) = 20t if t < 800 else req(t) = 16000
TW Twitter Real trace collected on January 1st, 2021 [50]

TABLE 3: Workloads used to evaluate autoscaling solutions
in simulated experiments.

For these experiments, α = 0.8 and TargetRT = 0.48.

5.1.1 Results
For each considered autoscaling approach, we present the
number of SLA violations and the average number of cores
allocated to all containers. All autoscaling solutions con-
trol the system for 1000 seconds. SLA violations and the
number of allocated cores are monitored at the end of each
control window with a different time horizon depending
on the controller being evaluated. Specifically, for Target-
Fast, ScaleX, and QN-CTRL data are averaged over the last
second (i.e., their control period), while results of all other
approaches are carried out on the previous 30 seconds.

AppDet. Table 4 shows SLA violations (V) and the
number of allocated cores (Aµ) of the 8 autoscaling strate-
gies (Approach) under different workloads (W), when they
control the AppDet application. Response time statistics
(i.e., average, µ, standard deviation, σ, minimum value, m,
and maximum value, M) are computed by observing the
response time of each control period. For each workload,
we highlight (in bold) the best autoscaling strategy, i.e., the
one with the lowest number of SLA violations and, in the event of
a draw, with the lowest number of allocated cores.

With AppDet, ScaleX is the autoscaling approach that
performs better except when used to control the ST2 work-
load. Generally, ScaleX does not violate the SLA and is the
solution with the smallest number of allocated cores among
strategies with the same number of SLA violations. Static
(1) is the autoscaling approach with the largest number of
violations and in some cases (i.e., ST1 and TW) it serves
no requests within the SLA. Intuitively, the constant alloca-
tion provided by Static (1) cannot properly handle highly
dynamic and fluctuating workloads. When the system is
controlled by QN-CTRL only a few violations are observed
and the number of allocated cores is comparable to the one
of ScaleX. QN-CTRL performs particularly badly (i.e., 62
violations) with the RP1 workload due to the initial small
number of requests in the system that does not facilitate the
learning process on which the approach relies [53]. Instead,
QN-CTRL is better than ScaleX when it is used to control the
ST2 workload. Although the initial number of requests is
still small (i.e., only 50 requests, see Table 3), the workload
grows soon to a large value. As discussed in Section 4, QN-
CTRL is a technique based on differential equations and
works better (i.e., its predictions are more accurate) when
the number of requests increases.

Figures 4(c) and 4(e) show the response times and al-
located resources obtained by ScaleX, QN-CTRL, and the
best performing industrial solution when controlling SN1
plotted in Figure 4(a). ScaleX, QN-CTRL, and TargetFast do

RT
W Approach µ σ m M V Aµ

Static (1) 0.98 0.27 0.50 1.31 846 1.00
Rule-based 0.38 0.16 0.12 0.75 91 4.93
Rule-based (+3) 0.41 0.15 0.16 0.88 110 4.99
Step 0.28 0.12 0.10 0.45 0 7.00
Target 0.43 0.15 0.17 0.79 145 4.29
TargetFast 0.41 0.06 0.27 0.53 0 4.57
ScaleX 0.48 0.02 0.28 0.51 0 3.77

SN1

QN-CTRL 0.48 0.03 0.01 0.54 0 4.47
Static (1) 1.10 0.39 0.32 1.52 820 1.00
Rule-based 0.37 0.21 0.05 0.70 181 7.68
Rule-based (+3) 0.43 0.27 0.05 1.19 272 6.96
Step 0.32 0.18 0.05 0.57 0 9.24
Target 0.56 0.34 0.06 1.37 436 5.20
TargetFast 0.43 0.10 0.18 0.67 37 8.14
ScaleX 0.46 0.06 0.29 0.55 0 5.90

SN2

QN-CTRL 0.48 0.04 0.01 0.64 2 7.14
Static (1) 1.65 0.17 1.19 1.82 1000 1.00
Rule-based 0.58 0.10 0.29 0.67 624 20.68
Rule-based (+3) 0.51 0.06 0.29 0.67 41 25.24
Step 0.51 0.07 0.29 0.66 34 25.60
Target 0.49 0.06 0.29 0.73 28 28.13
TargetFast 0.53 0.25 0.11 1.00 369 147.57
ScaleX 0.49 0.03 0.30 0.59 0 27.97

ST1

QN-CTRL 0.48 0.03 0.01 0.77 2 29.68
Static (1) 1.32 0.66 0.16 1.74 755 1.00
Rule-based 0.65 0.43 0.01 1.72 553 14.28
Rule-based (+3) 0.47 0.31 0.01 1.69 188 18.94
Step 0.54 0.41 0.01 1.69 228 18.35
Target 0.46 0.27 0.01 1.71 101 18.88
TargetFast 0.45 0.28 0.01 1.00 353 89.81
ScaleX 0.41 0.14 0.07 0.87 9 19.98

ST2

QN-CTRL 0.44 0.11 0.01 1.72 5 19.73
Static (1) 1.57 0.32 0.01 1.80 969 1.00
Rule-based 0.62 0.07 0.01 0.67 842 17.14
Rule-based (+3) 0.52 0.07 0.01 0.64 17 22.29
Step 0.54 0.06 0.01 0.66 98 22.02
Target 0.49 0.06 0.01 0.65 18 24.93
TargetFast 0.52 0.26 0.01 1.02 381 134.38
ScaleX 0.48 0.05 0.01 0.50 0 24.86

RP1

QN-CTRL 0.52 0.15 0.01 1.39 62 25.19
Static (1) 1.70 0.27 0.01 1.87 982 1.00
Rule-based 0.93 0.10 0.01 1.00 982 17.14
Rule-based (+3) 0.54 0.06 0.01 0.90 24 43.44
Step 0.60 0.14 0.01 0.97 235 43.23
Target 0.53 0.10 0.01 0.95 112 48.70
TargetFast 0.55 0.29 0.01 1.04 434 329.58
ScaleX 0.49 0.04 0.01 0.52 0 48.48

RP2

QN-CTRL 0.48 0.03 0.01 0.65 3 50.99
Static (1) 1.71 0.03 1.66 1.79 1000 1.00
Rule-based 0.30 0.03 0.25 0.39 0 52.32
Rule-based (+3) 0.33 0.04 0.26 0.43 0 47.14
Step 0.46 0.08 0.27 0.57 0 31.74
Target 0.46 0.04 0.26 0.54 0 30.71
TargetFast 0.54 0.26 0.12 0.99 436 131.34
ScaleX 0.47 0.04 0.29 0.52 0 30.11

TW

QN-CTRL 0.48 0.03 0.01 0.57 0 35.56

TABLE 4: Autoscaling solutions for a simulated system
under different workloads to control the response time of
AppDet.

not violate the SLA. TargetFast is generally far from the
SLA since it allocates more resources with respect to our
approaches. TargetFast provides an allocation that is only
proportional to the mismatch between the target response
time and its monitored value (i.e., the error). This approach
is more sensible to noise compared to our solutions (e.g.,
ScaleX embeds an integral factor to mitigate overshooting)
and leads to a more unstable system. This is also clearly
observable in the standard deviation of response times: 0.40
of TargetFast against 0.21 of ScaleX and 0.05 of QN-CTRL.

QN-CTRL and ScaleX are close to the SLA (they meet
well the specified target, i.e., 0.48 seconds), but QN-CTRL
initially uses more cores than ScaleX to serve the requests
(i.e., due to the inaccuracy of the underlying performance
model in the early phases of calibration).

AppExp. Table 5 shows the performance of the 8 au-
toscaling solutions when they control the AppExp applica-
tion. In this case, QN-CTRL is the autoscaling approach with

9

0.3

0.6

0.9

1.2

1.5

 0 250 500 750 1000

In
te

ns
it

y
[r

eq
 (

10
3)]

Time [sec]

(a) SN1, AppDet

0.2

0.4

0.6

0.8

1.0

 0 250 500 750 1000

In
te

ns
it

y
[r

eq
 (

10
4)]

Time [sec]

(b) ST1, AppExp

 0.3

 0.6

 0.9

 1.2

 0 250 500 750 1000

R
es

po
ns

e
T

im
e

[s
ec

]

Time [sec]

TargetFast
ScaleX

QN-CTRL

SLA

(c) SN1, AppDet

 0.3

 0.6

 0.9

 1.2

 0 250 500 750 1000

R
es

po
ns

e
T

im
e

[s
ec

]

Time [sec]

Target
ScaleX

QN-CTRL

SLA

(d) ST1, AppExp

 0

 3

 6

 9

 12

 15

 0 250 500 750 1000

C
or

es

Time [sec]

TargetFast
ScaleX

QN-CTRL

(e) SN1, AppDet

 0

 100

 200

 300

 400

 0 250 500 750 1000

C
or

es

Time [sec]

Target
ScaleX

QN-CTRL

(f) ST1, AppExp

Fig. 4: Workload (1st row), response time (2nd row), and
number of allocated cores (3rd row), for ScaleX, QN-CTRL,
and the best industrial controller.

the smallest number of violations. This is due to QN-CTRL
assuming that the service time is exponentially distributed,
see Section 4. Independently of the considered workload,
there is no other approach that performs as well as QN-
CTRL when considering SLA violations. This comes with
a larger number of cores allocated by QN-CTRL, i.e., it is
always larger than the one of other strategies, except Step
(Sine workloads) and TargetFast (all workloads). TargetFast
presents a large number of violations, independently of
the considered workload. Interestingly, it is also the ap-
proach that allocates the largest number of cores. In this
case, combining a fast control period and proportional-only
resource provisioning leads to a highly fluctuating system
that struggles to reach stability.

Figures 4(d) and 4(f) show the response times and al-
located resources obtained by ScaleX, QN-CTRL, and the
best performing industrial solution when controlling ST1
depicted in Figure 4(b).

All autoscaling solutions show some violations, espe-

RT
W Approach µ σ m M V Aµ

Static (1) 14.00 7.05 4.03 23.95 1000 1.00
Rule-based 0.94 0.69 0.17 3.02 614 17.34
Rule-based (+3) 0.69 0.58 0.13 3.02 476 24.74
Step 0.58 0.58 0.11 3.02 327 31.48
Target 0.59 0.44 0.19 3.02 352 28.40
TargetFast 0.66 0.40 0.04 2.02 588 1236.92
ScaleX 0.51 0.21 0.43 2.24 21 28.85

SN1

QN-CTRL 0.48 0.05 0.02 2.00 1 29.85
Static (1) 22.02 13.92 2.32 41.66 1000 1.00
Rule-based 1.20 0.88 0.08 3.79 667 20.02
Rule-based (+3) 0.86 0.72 0.06 3.79 571 29.51
Step 0.60 0.67 0.03 3.79 352 51.12
Target 1.19 1.22 0.04 5.73 569 33.47
TargetFast 0.67 0.40 0.03 2.06 590 2388.59
ScaleX 0.54 0.27 0.31 2.60 316 43.67

SN2

QN-CTRL 0.48 0.06 0.02 2.00 1 47.06
Static (1) 107.28 54.63 20.00 180.00 1000 1.00
Rule-based 3.84 0.91 1.55 5.00 1000 26.14
Rule-based (+3) 1.82 0.18 1.07 2.14 1000 58.41
Step 0.73 0.38 0.49 2.00 333 194.34
Target 0.56 0.28 0.48 2.00 124 218.01
TargetFast 0.73 0.45 0.03 2.00 609 16778.47
ScaleX 0.53 0.18 0.44 2.00 49 213.62

ST1

QN-CTRL 0.48 0.05 0.02 2.00 4 225.76
Static (1) 75.25 42.51 1.00 100.00 1000 1.00
Rule-based 7.74 8.39 0.04 50.00 797 15.75
Rule-based (+3) 2.98 3.65 0.02 25.00 791 45.25
Step 4.43 8.60 0.02 50.00 478 103.53
Target 1.26 3.51 0.02 33.33 146 142.32
TargetFast 0.70 0.61 0.02 5.44 496 13342.03
ScaleX 0.55 0.49 0.02 5.94 63 152.88

ST2

QN-CTRL 0.48 1.49 0.02 47.53 2 214.03
Static (1) 95.22 52.52 0.02 160.02 994 1.00
Rule-based 5.49 0.75 0.02 5.97 994 17.14
Rule-based (+3) 2.02 0.36 0.02 5.12 994 49.41
Step 1.63 1.58 0.02 5.78 482 154.09
Target 0.70 0.68 0.02 5.12 122 192.85
TargetFast 0.71 0.44 0.02 1.20 589 14911.06
ScaleX 0.51 0.06 0.02 1.17 18 191.52

RP1

QN-CTRL 0.48 0.02 0.02 0.56 0 199.84
Static (1) 190.42 105.03 0.02 320.02 997 1.00
Rule-based 10.98 1.49 0.02 11.93 997 17.14
Rule-based (+3) 4.04 0.72 0.02 10.22 997 49.41
Step 3.03 3.33 0.02 11.55 600 275.30
Target 0.96 1.49 0.02 10.22 153 383.46
TargetFast 0.73 0.45 0.02 1.21 602 31598.89
ScaleX 0.55 0.15 0.02 2.33 22 365.00

RP2

QN-CTRL 0.48 0.02 0.02 0.58 0 399.46
Static (1) 109.47 15.32 88.26 154.30 1000 1.00
Rule-based 1.43 0.30 0.95 2.06 1000 78.14
Rule-based (+3) 1.09 0.36 0.56 2.06 907 110.41
Step 0.62 0.30 0.46 2.06 128 196.38
Target 0.54 0.26 0.44 2.06 49 220.00
TargetFast 0.74 0.46 0.03 2.05 609 17311.00
ScaleX 0.52 0.21 0.45 2.06 51 221.42

TW

QN-CTRL 0.48 0.07 0.02 2.10 2 233.66

TABLE 5: Autoscaling solutions for a simulated system
under different workloads to control the response time of
AppExp.

cially when the number of requests in the system suddenly
changes. QN-CTRL reacts faster than ScaleX and Target to
workload variations by allocating additional cores, espe-
cially when the number of requests is large. This allows QN-
CTRL to significantly reduce the number of SLA violations,
see Figure 4(d). QN-CTRL violates the SLA during initial
control periods, i.e., while learning the workload to control,
but it allocates an optimized amount of resources faster than
other approaches for the rest of the experiment.

Target vs. SLA. The sensitivity of ScaleX and QN-CTRL
to α, i.e., the parameter used to define the target/set-point
of the controller in Eq. (11), is shown in Tables 6 and 7
for two workloads, ST2 and TW, respectively, when scaling
strategies control the response time of AppDet. When the
two approaches control ST2, QN-CTRL always allocates a
(slightly) smaller number of cores than ScaleX, indepen-
dently of α. However, ScaleX allows violating the SLA less
than QN-CTRL when α > 0.90. Looking at the average

10

RT
α Approach µ σ m M V Aµ

ScaleX 0.36 0.12 0.06 0.84 8 23.750.70 QN-CTRL 0.39 0.09 0.01 1.76 4 23.70
ScaleX 0.38 0.13 0.07 0.86 9 21.770.75 QN-CTRL 0.42 0.10 0.01 1.87 4 21.56
ScaleX 0.41 0.14 0.07 0.87 9 19.980.80 QN-CTRL 0.44 0.11 0.01 1.72 5 19.73
ScaleX 0.43 0.16 0.07 0.88 10 18.440.85 QN-CTRL 0.46 0.13 0.01 1.85 5 18.08
ScaleX 0.45 0.17 0.07 0.89 19 17.100.90 QN-CTRL 0.49 0.15 0.01 1.78 10 16.70
ScaleX 0.47 0.18 0.08 0.91 24 15.830.95 QN-CTRL 0.51 0.16 0.01 1.86 104 15.44
ScaleX 0.49 0.19 0.08 0.89 104 14.920.99 QN-CTRL 0.53 0.18 0.01 1.88 389 14.55

TABLE 6: Sensitivity of ScaleX and QN-CTRL to different
threshold values. The simulated system is subject to the ST2
workload and the AppDet application.

RT
α Approach µ σ m M V Aµ

ScaleX 0.41 0.02 0.28 0.46 0 35.520.70 QN-CTRL 0.42 0.03 0.01 0.50 0 41.18
ScaleX 0.44 0.03 0.28 0.50 0 32.640.75 QN-CTRL 0.45 0.03 0.01 0.51 0 38.18
ScaleX 0.47 0.04 0.29 0.52 0 30.110.80 QN-CTRL 0.48 0.03 0.01 0.57 0 35.56
ScaleX 0.50 0.04 0.28 0.55 0 27.880.85 QN-CTRL 0.51 0.03 0.01 0.59 0 33.31
ScaleX 0.53 0.05 0.28 0.58 0 25.860.90 QN-CTRL 0.54 0.03 0.01 0.62 7 31.13
ScaleX 0.55 0.05 0.29 0.62 13 24.100.95 QN-CTRL 0.57 0.03 0.01 0.67 117 29.29
ScaleX 0.58 0.06 0.28 0.64 194 22.850.99 QN-CTRL 0.59 0.04 0.01 0.68 431 27.99

TABLE 7: Sensitivity of ScaleX and QN-CTRL to different
threshold values. The simulated system is subject to the TW
workload and the AppDet application.

response time observed for the two autoscaling solutions,
QN-CTRL is always closer to the given target than ScaleX.

Considering the real-world workload (i.e., TW), see Ta-
ble 7, ScaleX works always better than QN-CTRL with a
smaller number of SLA violations and allocated cores, inde-
pendently of the value of α. Moreover, ScaleX meets the SLA
for larger values of α (i.e., the SLA is not violated even with
α = 0.90), thus enabling larger savings for what concerns
the allocation of cores. With this workload, both approaches
keep the response time close to the desired target.

5.2 Cloud-based experiments

After evaluating ScaleX and QN-CTRL in a simulated envi-
ronment, we analyze the performance of two applications
deployed in AWS that serve different loads.

Applications. We consider two CPU-intensive systems
(i.e., dynamic-html and graph-mst) from the SeBS bench-
mark [54], i.e., a widely used suite for the performance
analysis of microservice applications. Dynamic-html is a web
application that generates dynamic HTML from a prede-
fined template. Graph-mst replicates analytic and engineer-
ing applications that solve irregular graphs using minimum
spanning tree.

Workloads. Synthetic (SN3 and RP3) and real-world
(TW and WK) traces are used to load the two SeBS applica-
tions, see Table 8. The Wikipedia workload (WK) is a trace of

Name Type Description
SN3 Sine req(t) = 20 ∗ sin(t π

100) + 20

RP3 Ramp req(t) =

 10 t < 150
10 + 0.15 ∗ t 150 ≤ t < 450
78 otherwise

TW Twitter Real trace collected on January 1st, 2021 [50]
WK Wikipedia Real trace collected on September 19th, 2007 [55]

TABLE 8: Workloads used to evaluate autoscaling solutions
in cloud-based experiments.

traffic extracted by the Wikipedia archives which has been
widely used in the literature [56], [57] as a benchmark. The
intensity (i.e., requests per second) of real-world workloads
is downsized by a factor of 40 to meet the limited number
of resources that we can deploy on AWS. The shape and
autocorrelation [58] of these workloads remain unchanged
and identical to those observed in the available traces. TW
and WK workloads are depicted in Figures 5(a) and 5(b),
respectively. Requests are generated using Locust [59], a
Python-based load-testing tool.

Environment. Applications and the workload generator
are deployed in a c3.8xlarge AWS instance (32 vCPUs, 60GB
memory, 8GB SSD, and Amazon Linux 2 OS). The SeBS
applications are instantiated using Docker containers whose
resource availability is 16 vCPUs. The OS uses 8 vCPUs for
internal operations, while Locust generates new requests
using the remaining 8 vCPUs. Since applications are de-
ployed in a real environment, each experiment is repeated
five times, for a total of 320 runs.

Service-level Agreement (SLA). For both applications,
we set the SLA to 0.25 seconds and α = 0.7. Therefore,
TargetRT = 0.175, see Eq. (11).

5.2.1 Results
Dynamic-html. Table 9 reports the performance of all in-
dustrial controllers, ScaleX, and QN-CTRL when they are
used with the dynamic-html application. The experiments
confirm the trends observed in simulation-based tests: in-
dustrial approaches violate the SLA a significantly higher
amount of times compared to ScaleX and QN-CTRL. On
average, they violate 122 times the SLA against only 2.75
and 0 times of ScaleX and QN-CTRL, respectively. If we
focus only on the top-performing industrial approach for
each workload (namely, TargetFast for SN3 and WK, and
Step for RP3 and TW), we still observe that the average
number of SLA violations is 15, which is over 5 times more
than the violations obtained by our solutions. The number
of violations of TargetFast with SN3 and WK workloads is
comparable to the one of ScaleX, but the industrial approach
allocates a larger amount of resources. Furthermore, ScaleX
and QN-CTRL provide, in most cases, faster response times
compared to industrial approaches with standard deviations
that are always lower. This means that our solutions can
keep the system responsive and stable, while industrial
solutions obtain more fluctuations.

In terms of resource allocation, QN-CTRL provision be-
tween 2 to 3 cores depending on the considered workload
and never violates the SLA. ScaleX provides better perfor-
mance (i.e., no violation and fewer allocated cores) com-
pared to QN-CTRL only with workload RP3. Figures 5(c)
and 5(e) depict the performance (response time and allo-

11

RT
W Approach µ σ m M V Aµ

Static (1) 0.38 0.20 0.06 0.72 262 1.00
Rule-based 0.20 0.12 0.06 0.55 86 1.62
Rule-based (+3) 0.22 0.12 0.06 0.56 131 2.40
Step 0.13 0.07 0.06 0.32 24 1.95
Target 0.17 0.09 0.06 0.44 62 1.81
TargetFast 0.15 0.05 0.06 0.25 5 2.49
ScaleX 0.18 0.03 0.06 0.25 3 1.97

SN3

QN-CTRL 0.11 0.02 0.06 0.18 0 2.43
Static (1) 0.74 0.51 0.06 1.47 351 1.00
Rule-based 0.28 1.38 0.06 24.34 64 2.76
Rule-based (+3) 0.49 1.14 0.06 13.11 211 3.55
Step 0.16 0.04 0.06 0.31 32 2.34
Target 0.19 0.09 0.06 0.41 98 2.47
TargetFast 0.20 0.09 0.06 0.36 120 6.62
ScaleX 0.18 0.03 0.06 0.24 0 2.59

RP3

QN-CTRL 0.10 0.02 0.06 0.18 0 3.21
Static (1) 0.27 0.14 0.06 0.66 206 1.00
Rule-based 0.18 0.07 0.06 0.44 63 1.35
Rule-based (+3) 0.18 0.09 0.06 0.52 80 1.96
Step 0.11 0.05 0.06 0.30 15 1.90
Target 0.16 0.06 0.06 0.37 37 1.47
TargetFast 0.15 0.06 0.06 0.27 19 2.63
ScaleX 0.18 0.03 0.06 0.26 1 1.68

TW

QN-CTRL 0.11 0.02 0.06 0.18 0 2.04
Static (1) 0.34 0.05 0.06 0.44 570 1.00
Rule-based 0.20 0.08 0.06 0.40 178 1.57
Rule-based (+3) 0.30 0.75 0.06 9.60 167 2.86
Step 0.10 0.04 0.06 0.29 11 1.96
Target 0.18 0.08 0.06 0.39 138 1.66
TargetFast 0.16 0.06 0.06 0.25 8 3.21
ScaleX 0.19 0.04 0.07 0.26 7 2.15

WK

QN-CTRL 0.11 0.02 0.06 0.15 0 2.43

TABLE 9: Autoscaling solutions for a cloud system under
different workloads to control the response time of dynamic-
html.

cated cores, respectively) of ScaleX and QN-CTRL under
workload TW. Solid lines depict average values, whereas
shaded areas show the performance distribution. While QN-
CTRL keeps the response time always far from the provided
SLA, requests controlled by ScaleX occasionally violate the
given objective. This means that QN-CTRL is more conserva-
tive: it allocates a (slightly) larger number of cores compared
to ScaleX to safely keep the response time under the SLA.

Graph-mst. Similar results are observed with application
graph-mst, as shown in Table 10. Industrial approaches ob-
tain overall worse performance compared to our solutions.
QN-CTRL never violates the SLA no matter the considered
application but allocates more cores compared to ScaleX.
ScaleX obtains zero SLA violations by using fewer resources
compared to QN-CTRL with workloads RP3 and WK.

Overall, Step and TargetFast are the best industrial ap-
proaches, but they never outperform our solutions except
for TargetFast that violates fewer times the SLA compared
to ScaleX with workload SN3. As with application dynamic-
html, the average response times and standard deviations
obtained by ScaleX and QN-CTRL are lower compared to
those of industrial solutions in most of the cases.

Figures 5(d) and 5(f) depict the response time and the
number of cores used by ScaleX and QN-CTRL with work-
load WK. Our solutions are able to keep the response time
always under the SLAs considering both the average and
the maximum values. QN-CTRL tends to allocate more cores
than ScaleX (3.20 cores against 2.85) with a resulting faster
average response time (0.15s vs 0.18s).

 10

 20

 30

 40

 50

 0 200 400 600

In
te

ns
it

y
[r

eq
]

Time [sec]

(a) TW, Dynamic-html

 10

 20

 30

 40

 50

 0 200 400 600

In
te

ns
it

y
[r

eq
]

Time [sec]

(b) WK, Graph-mst

 0.1

 0.2

 0.3

 0 200 400 600

R
es

po
ns

e
T

im
e

[s
ec

]

Time [sec]

ScaleX
QN-CTRL

SLA

(c) TW, Dynamic-html

 0.1

 0.2

 0.3

 0 200 400 600

R
es

po
ns

e
T

im
e

[s
ec

]

Time [sec]

ScaleX
QN-CTRL

SLA

(d) WK, Graph-mst

 1

 2

 3

 4

 5

 0 200 400 600

C
or

es

Time [sec]

ScaleX
QN-CTRL

(e) TW, Dynamic-html

 1

 2

 3

 4

 5

 0 200 400 600

C
or

es
Time [sec]

ScaleX
QN-CTRL

(f) WK, Graph-mst

Fig. 5: Workload (1st row), response time (2nd row), and
number of allocated cores (3rd row), for ScaleX and QN-
CTRL.

5.3 Cost Analysis

While ScaleX and QN-CTRL appear to clearly outperform
industrial solutions, understanding the trade-off between
the two approaches requires further analysis. Sections 5.1
and 5.2 show that ScaleX outperforms QN-CTRL with more
deterministic applications and that, in most cases, it allo-
cates fewer cores than QN-CTRL. In contrast, QN-CTRL per-
formed better with more “noisy” applications and tended to
produce fewer SLA violations.

Besides allocated resources and violations, we present a
cost analysis to deepen the comparison. We adopt the model
proposed by Kumar et al. [60], which formalizes the cost
of running a system by means of two terms: (i) when the
system behaves above agreed expectations (SLA), namely
resource over-provisioning, and (ii) when the system is be-
low the desired performance (SLA violations), i.e., resource
under-provisioning. The cost is defined as follows:

12

RT
W Approach µ σ m M V Aµ

Static (1) 0.85 0.52 0.09 1.66 358 1.00
Rule-based 0.29 0.17 0.08 0.70 187 2.29
Rule-based (+3) 0.34 0.27 0.08 1.34 210 2.92
Step 0.19 0.16 0.08 0.71 64 2.84
Target 0.24 0.13 0.08 0.66 135 2.58
TargetFast 0.17 0.04 0.08 0.29 11 3.46
ScaleX 0.18 0.04 0.09 0.29 22 2.81

SN3

QN-CTRL 0.14 0.02 0.09 0.20 0 3.11
Static (1) 1.36 0.98 0.09 2.74 398 1.00
Rule-based 0.20 0.07 0.09 0.53 80 3.16
Rule-based (+3) 0.28 0.27 0.08 1.80 143 3.41
Step 0.19 0.04 0.09 0.33 50 3.15
Target 0.19 0.06 0.09 0.43 59 3.39
TargetFast 0.20 0.07 0.08 0.32 126 7.93
ScaleX 0.18 0.02 0.09 0.24 0 3.78

RP3

QN-CTRL 0.13 0.02 0.09 0.29 0 4.33
Static (1) 0.58 0.37 0.09 1.56 486 1.00
Rule-based 0.20 0.08 0.09 0.50 111 2.08
Rule-based (+3) 0.28 0.19 0.09 1.10 242 2.77
Step 0.39 1.23 0.09 12.37 55 3.89
Target 0.17 0.07 0.09 0.43 71 2.23
TargetFast 0.17 0.05 0.09 0.29 24 3.77
ScaleX 0.18 0.03 0.09 0.26 9 2.46

TW

QN-CTRL 0.15 0.03 0.09 0.21 0 2.65
Static (1) 0.92 0.16 0.09 1.17 585 1.00
Rule-based 0.20 0.10 0.09 0.65 98 2.59
Rule-based (+3) 0.59 1.40 0.09 12.83 358 4.10
Step 0.13 0.09 0.09 0.58 47 2.90
Target 0.19 0.08 0.09 0.60 59 2.46
TargetFast 0.17 0.05 0.09 0.30 54 4.30
ScaleX 0.18 0.02 0.09 0.23 0 2.85

WK

QN-CTRL 0.15 0.02 0.09 0.20 0 3.20

TABLE 10: Autoscaling solutions for a cloud system under
different workloads to control the response time of graph-
mst.

COST =
T∑
t

{
P ∗ (τt − τ◦), if τt > τ◦,

C ∗ (τ◦ − τt), otherwise.
(12)

where τt is the monitored response time at time t, T is the
total considered time, τ◦ is the set point on the response time
(i.e., desired performance), and P and C are two constants,
defined in [0,∞], that represent the cost of penalties and
over-allocation, respectively. In essence, each contribution is
proportional to the distance from the set point, and the ratio
R = P

C defines the weight of penalty costs compared to the
ones caused by over-allocation.

We compute the cost of each experiment in Section 5.2
using Equation 12 with C = 0.0015 as in [60], and R =
P/C = [1, 2, 3, 4], thus understanding the impact of this
ratio on the cost-effectiveness of each approach. This way
we obtained a total of 320 data points.

The comparison metric, named COMP , is then given by
the following formula:

COMP =
(COSTScaleX − COSTQN-CTRL)

min(COSTScaleX, COSTQN-CTRL)
(13)

COMP quantifies which approach performs better and
by how much. If the result is negative, ScaleX is more
cost-effective; otherwise, QN-CTRL outperforms the cost-

COMP

App W R = 1 R = 2 R = 3 R = 4

SN3 -2.17 -1.09 -0.56 -0.25
RP3 -3.02 -1.67 -1.00 -0.60
TW -1.66 -0.68 -0.23 0.03dynamic

WK -1.20 -0.31 0.07 0.37
SN3 -0.05 0.53 1.09 1.64
RP3 -1.64 -0.56 -0.12 0.13
TW -0.28 0.13 0.43 0.68graph

WK -0.67 -0.12 0.16 0.42

TABLE 11: ScaleX and QN-CTRL: cost comparison.

effectiveness. The numerical values indicate the percentage
of the comparison, e.g., a COMP value of 0.30 indicates
that QN-CTRL is 30% more cost-effective (i.e., cheaper) than
ScaleX. Similarly, a value of −0.50 means that ScaleX is 50%
more cost-effective than QN-CTRL.

Table 11 presents the values (averaged over 5 repetitions
run for each experiment and approach) of COMP in the 32
cases taken into account: 2 applications × 4 workloads ×
4 values for R. For application dynamic-html, all values, no
matter the workload, are negative with R = 1, 2, which
suggests a higher cost-effectiveness for ScaleX. However,
with R > 2, the value becomes positive for some workloads
(TW and WK), which indicates a shift in cost-effectiveness
in favor of QN-CTRL. Similarly, with application graph-mst,
with low R′s, the values are generally negative or close to
zero, which suggests that ScaleX exhibits similar or superior
cost-effectiveness. However, as R increases (i.e., R > 1), the
values become consistently positive, that is, they witness
that QN-CTRL is more cost-effective.

Summarizing, as expected, R plays a key role in defining
the cost-effectiveness of a solution. With low values of R′s,
that is, when SLA violations and over-allocations have the
same impact, ScaleX tends to be more cost-effective. This
means that users may prefer very efficient core allocations at
the cost of occasional violations. Higher values of R′s mean
that SLA violations are considered more costly (important)
than allocated resources, and this leads QN-CTRL outper-
forming ScaleX. This is the case when a more conservative
resource allocation aims to minimize SLA violations.

5.4 Lessons Learned

The experiments based on both simulated and cloud ex-
ecutions allowed us to extensively compare six industrial
autoscaling solutions, ScaleX and QN-CTRL.

One may think that the industrial solutions available
in public cloud platforms are optimized to reduce SLA
violations while providing a conservative resource alloca-
tion (higher billing but better performance). However, our
results show that none of the industrial approaches we
tested can consistently minimize response time violations
no matter the type and shape of the workload, the target
application, and the execution environment (simulation or
cloud-based deployments). Some heuristics appear to be
better than others in some cases, but their simple design
makes them not flexible enough to perform well in different
scenarios. In contrast, both ScaleX and QN-CTRL obtain sig-
nificantly fewer SLA violations. Thanks to their theoretical

13

foundation, they can properly adapt to different workloads
and, on average, their response times are closer to the set
points with small standard deviations, indicating that the
controlled system is kept responsive and stable.

If we consider simulation-based approaches, when re-
quests are served with a deterministic service time, ScaleX
generally reduces the number of SLA violations and allo-
cated cores. ScaleX copes well with deterministic requests
since it is feedback-based. Since the QN-CTRL assumption
(i.e., exponential service time) deviates from the attributes of
the controlled system (i.e., deterministic service time), QN-
CTRL does not perform as well as ScaleX. The only exception
is observed with the Stair workload (i.e., ST2), where the
best autoscaling approach is QN-CTRL. This may be due to
sudden changes in the workload intensity that mostly keep
large values and facilitate the learning process on which
QN-CTRL relies.

When the service time follows an exponential distri-
bution (i.e., a common practice when considering cloud
computing applications [61], [62], [63]), QN-CTRL is the
autoscaling approach that provides the best performance
(i.e., the smallest number of SLA violations and allocated
cores). This is due to QN-CTRL assuming exponentially
distributed service time for the controlled application.

Cloud-based experiments assess the performance of
ScaleX and QN-CTRL with respect to industrial controllers
and show possible directions to improve both approaches.
The response time of real cloud applications is rarely de-
terministic due to application interference [64] and other
noise. Hence, ScaleX may underestimate the application
requirements and violate the given SLA since it leverages a
feedback-based control mechanism. QN-CTRL may allocate
a large number of cores when the service time does not
follow an exponential distribution. This is due to the QN
estimator that should be extended, as part of our future
work, to subsume generic distributed service times.

All approaches need to comply with user-defined SLAs,
a common practice in robust control is to define a target by
scaling down the given SLA to facilitate controllers in their
task [52], see Eq. (11). For this purpose, a scaling parameter
is adopted, i.e., α in Eq. (11). Correctly tuning this parameter
based on the response time model and workload enables
enhanced performance and further savings.

Our evaluation shows that both ScaleX and QN-CTRL
outperform all the examined industrial solutions. More-
over, our analysis indicates the choice between our two
approaches depends on the criticality of the controlled ap-
plication and the user’s requirements. From an architectural
standpoint, ScaleX is more lightweight and scalable than
QN-CTRL due to its hierarchical approach. Conversely, QN-
CTRL consistently demonstrates fewer SLA violations and a
generally higher core allocation. The cost analysis detailed
in Section 5.3 aims to focus on this aspect, evaluating the
two autoscalers across increasing levels of criticality. The
findings emphasize that if the objective is to minimize core
allocation, even if it entails occasional SLA violations, then
ScaleX is likely the more fitting choice. On the contrary, QN-
CTRL is the preferable solution if the primary aim is to re-
duce SLA violations through a more conservative allocation
strategy. As a result, the decision hinges on the application’s
criticality and, by extension, the acceptable balance between

allocated resources and violations.

5.5 Threats to Validity

We conducted the experiments using two different appli-
cations exposed to a variegate set of seven representative
workloads. Even if ScaleX and QN-CTRL outperform indus-
trial solutions with respect to some metrics, in the following
we argue on threats that may constrain the validity of
obtained results [65].

Internal threats. The presented autoscaling techniques
aim to control the average value of the performance metrics
of interest (e.g., the system response time), not the distri-
bution of values (e.g., tail latency) that instead may trigger
further fluctuations to be managed. Both ScaleX and QN-
CTRL require to set a percentage (i.e., α) that provides some
flexibility from the user-defined SLA. This is intended to
better manage disturbances in the control objectives and
prevent violations. Our experiments demonstrate that set-
ting α = 0.8 works reasonably well for the considered tech-
niques, and this setting is motivated through experimenting
with other values for sensitivity analysis purposes. Besides,
QN-CTRL technique requires an estimation window to learn
(or update) the application model, hence the control ef-
fectiveness is affected by such learning procedure. In our
experiments, we observe that a small amount of time (i.e.,
tens of seconds) is required to learn the initial model (i.e.,
the slowest one to be learned).

External threats. To mitigate generalization issues, our
experiments use two different applications, multiple work-
loads, and compare a set of relevant approaches. The two
applications are characterized by different response time
models (already used in the literature [30], [43]) and service
times (i.e., deterministic and exponential). We employ “stan-
dard” synthetic workload shapes: sine, stair (i.e., step-like),
and ramp with different magnitudes obtaining comparable
results to the ones measured with a real-world workload. To
further improve our tests, we plan in the future to include
more real-world workloads and types of applications.

6 RELATED WORK

The problem of autoscaling resources at runtime in cloud-
based applications has been widely studied [66], [67], [68],
[69]. State-of-the-art approaches provide evidence of three
main branches of research that we review in the following.

Control theory autoscaling. Our previous work [70]
belongs to this category since we make use of control
theory techniques (i.e., Proportional-Integral-Derivative —
PID) to scale container-based applications on the basis of
envisioned execution times. Al-Dulaimy et al. [67] presents
a multi-loop autoscaling approach (including three layers)
performing the following tasks: regulate resources’ shares,
scale resources, and migrate VMs from one host to another.
However, the three loops work independently, and the lack
of coordination in their actions may represent a threat.
This limitation has been recently tackled in [66], where a
Monitoring and Measurement Unit (MMU) is introduced
to orchestrate the three layers, at the cost of a major com-
plexity and performance overhead. Yu et al. [71] focuses on
response times and the goal is to produce close-to-optimal

14

allocations, however, it does not provide formal guarantees
on the control and it does not support vertical scalability.
Podolskiy et al. [72] illustrate a comparison among different
cloud providers (AWS, GCP, and Azure), but we already
showed in [70] to scale faster than the others while targeting
containers. Zhang et al. [73] make use of workload usage
and duration, along with the cool-down period for scaling
the containers in the physical machines, however utilization
of CPU is considered only to vary the container size. Srirama
et al. [74] present a strategy for scaling out/down the
computing resources based on the resource utilization of the
physical machines and the resources requested by the non-
warm containers for processing the microservices. Salah et
al. [75] evaluate the performance of web services focusing on
Amazon cloud platform, and the comparison is performed
between: (i) AWS EC2 Container Service for container-based
deployment, and (ii) AWS Elastic Cloud Compute (EC2) for
VM-based deployment. Results show that the performance
of container-based web services is more critical, thus mo-
tivating our choice of designing experiments on containers
only. Padala et al. [76] propose the usage of classical control
theory techniques to automatically allocate resources based
on the dynamic workload changes; it represents seminal
work in the direction of designing adaptive resources that
are dynamically adjusted in their resource shares. With
respect to state-of-the-art control theory methodologies, our
ScaleX approach shows the advantage of targeting vertical
scaling on containers, and it turns out to provide the best
solutions for a large number of different workloads acting
on an application regulated by deterministic service times.

Analytical modeling autoscaling. In our previous
work [18] we make use of an efficient SMT solver [77]
to derive feasible control signals encoded in a QN perfor-
mance model, but no optimization was considered (as we
do in this paper). Funari et al. [78] propose an analytical
model for evaluating storage occupancy of clusters hosting
containerized applications and various scheduling policies
are introduced to prevent the growth of storage utilization
as cluster size increases. Tadakamalla et al. [79] present a
single-queue multiple-server system model (G/G/c) subject
to workload surges and scales the number of servers or
their capacity to mitigate the effects of such surges. Cai
et al. [80] propose a resource scaling engine that enables
provisioning for (non-)periodic workloads of long-running
services. It is constituted of three main components: (i)
identification of periodic patterns in history arrivals; (ii)
continuous tracking of request arrivals of services and pre-
diction of future resource demands; (iii) continuous moni-
toring of services latency and re-provisioning of resources if
a violation is imminent. Khamse-Ashari et al. [81] make use
of an optimization problem relying on a system model that
includes (i) servers distributed over multiple geographically
distributed clusters, and (ii) active users/tenants. The goal
is to minimize the operational costs of servers, while guar-
anteeing fairness (in terms of a minimum share of service)
across different users. Ali et al. [82] present an analytical au-
toscaling approach based on quantile regression. Different
from the solutions described in this paper, such an approach
focuses on (burstable) VMs. Biswas et al. [83] propose an
autoscaling technique based on broker profit (that is mod-
eled analytically as the difference between user and broker

costs), specifically resources are acquired on demand from
a public cloud to service requests; however the broker itself
may become a system bottleneck in computing required re-
sources. With respect to state-of-the-art analytical modeling
techniques, our QN-CTRL approach shows the advantage
of exploiting an optimization formulation of the problem to
minimize the number of servers, differently from [81] that
instead focuses on resource sharing among services. Our
methodology turns out to provide the best solutions for all
the variegate workloads acting on an application regulated
by the MVA algorithm.

Dynamic learning autoscaling. In our previous
work [84] we propose a machine-learning approach to de-
rive QNs from data and we found a maximum discrepancy
of 10% between learned models and ground truth. Sun
et al. [85] foster a technique grouping nodes with similar
performance to reduce the waiting time for faster workers
and improve the efficiency of computing resources, using
distributed deep learning. Abdullah et al. [56] define the
provisioning of resources as a learning process based on
the historical autoscaling performance traces; the predicted
workload is used to infer the number of containers needed
to satisfy the set response time. Forecasting workload has
been recently pursued by Feng et al. [86], where online
regression is adopted relying on a sliding window method
that takes into account trend and time correlations, along
with random fluctuations of workload. Osypanka et al. [87]
target cloud-based resource usage optimization through the
discovery and learning of historical data used to decide
when scaling system resources, specifically by comparing a
pre-defined allocation plan with current resources. Makridis
et al. [88] propose dynamic CPU allocation to address
resource provisioning in virtualized servers by means of
controllers that adjust the resources by computing variances
with respect to previous CPU utilization.

Fangming Liu et al. [89] present MarVeLScaler, a proto-
type system that provides a preliminary estimation, through
multi-view neural networks, of the required cluster size,
adjusted at runtime due to cluster’s real-time status. The
learning process is performed considering homogeneous
VMs only, heterogeneity is left as part of future work. Iqbal
et al. [90] target the autoscaling of multi-tier applications
with the goal of minimizing the usage of resources to
handle dynamically increasing workloads and satisfy the
response time requirements. A supervised learning method
is adopted to identify the appropriate resources based on the
prediction of the application response time and the request
arrival rate. Farokhi et al. [91] relies on a fuzzy controller
that builds upon known knowledge-based control, i.e., non-
linear functions implicitly constructed through fuzzy rules
and fuzzy inference by imitating human/learned control.
Compared to these approaches, our QN-CTRL methodology
relies on learning a QN model that is later used as a
software-hardware abstraction to define an efficient opti-
mization problem. This way, QN-CTRL shows the benefit
of providing optimal control signals that are efficiently de-
duced from the analysis of the learned performance model.

15

7 CONCLUSIONS

Autoscaling solutions are used by cloud providers to help
containerized applications cope with fluctuating workloads.
Several industrial solutions have been proposed, ranging
from ones based on simple rules to others that employ more
sophisticated heuristics. This paper analyzes the most im-
portant autoscaling solutions available on the major cloud
providers and compares them with two systems, that we
developed, based on control and queue theory, respectively.
Unlike industrial approaches that focus on horizontal scala-
bility, our solutions exploit vertical scaling that allows for
faster control periods. Using a comprehensive empirical
evaluation based on both simulated and cloud executions,
we demonstrate how our approaches outperform the in-
dustrial competitors in almost all scenarios, and under dy-
namic workloads. A cost analysis highlights that the choice
between ScaleX and QN-CTRL depends on the users’ pri-
orities in the trade-off between maximizing core allocation
efficiency and minimizing SLA violations.

In future work, we plan to combine our two autoscaling
techniques in a single controller that can adapt to different
execution environments by efficiently alternating different
control strategies.

8 ACKNOWLEDGEMENTS

The authors would like to thank the anonymous reviewers
for their valuable feedback. This work has been partially
funded by the national funding for MUR-PRIN projects
EMELIOT (2020W3A5FY) and DREAM (20228FT78M),
the MUR-PRO3 project on Software Quality, and the MUR-
PNRR project VITALITY (ECS00000041).

REFERENCES

[1] W. Zhang, S. Zeadally, W. Li, H. Zhang, J. Hou, and V. C.
Leung, “Edge AI as a Service: Configurable Model Deployment
and Delay-energy Optimization with Result Quality Constraints,”
IEEE Transactions Cloud Computing, 2022.

[2] N. Mahmoudi and H. Khazaei, “Performance Modeling of Metric-
Based Serverless Computing Platforms,” IEEE Transactions Cloud
Computing, 2022.

[3] L. Ruan, Y. Bai, S. Li, J. Lv, T. Zhang, L. Xiao, H. Fang, C. Wang,
and Y. Xue, “Cloud Workload Turning Points Prediction via Cloud
Feature-Enhanced Deep Learning,” IEEE Transactions Cloud Com-
puting, 2022.

[4] F. Rossi, V. Cardellini, F. L. Presti, and M. Nardelli, “Dynamic
Multi-metric Thresholds for Scaling Applications Using Reinforce-
ment Learning,” IEEE Transactions Cloud Computing, 2022.

[5] D. Cheng, Y. Wang, and D. Dai, “Dynamic Resource Provisioning
for Iterative Workloads on Apache Spark,” IEEE Transactions Cloud
Computing, 2021.

[6] Y. Al-Dhuraibi, F. Paraiso, N. Djarallah, and P. Merle, “Elasticity in
cloud computing: state of the art and research challenges,” IEEE
Transactions on Services Computing, vol. 11, no. 2, pp. 430–447, 2017.

[7] N. Sfondrini, G. Motta, and L. You, “Service level agreement (SLA)
in Public Cloud environments: A Survey on the current enterprises
adoption,” in International Conference on Information Science and
Technology. IEEE, 2015, pp. 181–185.

[8] S. Dustdar, Y. Guo, B. Satzger, and H. L. Truong, “Principles of
Elastic Processes,” IEEE Internet Computing, vol. 15, no. 5, pp. 66–
71, 2011.

[9] D. Bernstein, “Containers and Cloud: From LXC to Docker to
Kubernetes,” IEEE Cloud Computing, vol. 1, no. 3, pp. 81–84, 2014.

[10] V. Millnert and J. Eker, “HoloScale: horizontal and vertical scaling
of cloud resources,” in International Conference on Utility and Cloud
Computing. IEEE, 2020, pp. 196–205.

[11] D. Merkel, “Docker: Lightweight Linux Containers for Consistent
Development and Deployment,” Linux Journal, vol. 2014, no. 239,
2014.

[12] E. Lakew, A. Papadopoulos, M. Maggio, C. Klein, and E. Elmroth,
“KPI-Agnostic Control for Fine-Grained Vertical Elasticity,” in In-
ternational Symposium on Cluster, Cloud and Grid Computing. IEEE,
2017, pp. 589–598.

[13] L. Baresi and G. Quattrocchi, “Towards vertically scalable spark
applications,” in Europ. Conference on Parallel Processing. Springer,
2018, pp. 106–118.

[14] Kubernetes, “Production-Grade Container Orchestration,” https:
//kubernetes.io, 2022.

[15] C. Barna, M. Fokaefs, M. Litoiu, M. Shtern, and J. Wigglesworth,
“Cloud adaptation with control theory in industrial clouds,” in
Proceedings of International Conference on Cloud Engineering Work-
shop (IC2EW), 2016, pp. 231–238.

[16] L. Baresi and G. Quattrocchi, “COCOS: A Scalable Architecture for
Containerized Heterogeneous Systems,” in International Conference
on Software Architecture. IEEE, 2020, pp. 103–113.

[17] J. L. Hellerstein, Y. Diao, S. Parekh, and D. M. Tilbury, Feedback
control of computing systems. John Wiley & Sons, 2004.

[18] E. Incerto, M. Tribastone, and C. Trubiani, “Symbolic performance
adaptation,” in International Symposium on Software Engineering for
Adaptive and Self-Managing Systems. ACM, 2016, pp. 140–150.

[19] E. D. Lazowska, J. Zahorjan, G. Scott Graham, and K. C. Sev-
cik, Computer System Analysis Using Queueing Network Models.
Prentice-Hall, Inc., Englewood Cliffs, 1984.

[20] Amazon Web Services, “Step and simple scaling policies for
Amazon EC2 Auto Scaling,” https://docs.aws.amazon.com/
autoscaling/ec2/userguide/as-scaling-simple-step.html, 2022.

[21] Microsoft Azure, “AutoScale,” https://learn.microsoft.com/
en-us/azure/azure-monitor/autoscale/autoscale-overview#
what-is-autoscale, 2022.

[22] Amazon Web Services, “Target tracking scaling policies for
Amazon EC2 Auto Scaling,” https://docs.aws.amazon.com/
autoscaling/ec2/userguide/as-scaling-target-tracking.html, [On-
line; 2022-03-16].

[23] Google Cloud Platform, “Autoscale to maintain a metric at a target
value,” https://cloud.google.com/compute/docs/autoscaler/
scaling-cloud-monitoring-metrics#configure utilization target,
2022.

[24] Kubernetes, “Horizontal Pod Autoscaler,” https://kubernetes.io/
docs/tasks/run-application/horizontal-pod-autoscale/, 2022.

[25] Google Kubernetes Eninge, “Vertical Pod Autoscaler,”
https://cloud.google.com/kubernetes-engine/docs/concepts/
verticalpodautoscaler, 2022.

[26] Amazon Web Services, “Scheduled Scaling for Amazon EC2
Auto Scaling,” https://docs.aws.amazon.com/autoscaling/ec2/
userguide/ec2-auto-scaling-scheduled-scaling.html, 2022.

[27] Microsoft Azure, “Azure AutoScale based on Schedule,”
https://learn.microsoft.com/en-us/azure/azure-monitor/
autoscale/tutorial-autoscale-performance-schedule#
create-recurrence-profile, 2022.

[28] Google Cloud Platform, “Schedules in GCP,” https://cloud.
google.com/compute/docs/autoscaler#schedules, 2023.

[29] Amazon Web Services, “Predictive Scaling for Amazon EC2
Auto Scaling,” https://docs.aws.amazon.com/autoscaling/ec2/
userguide/ec2-auto-scaling-predictive-scaling.html, 2022.

[30] L. Baresi, S. Guinea, A. Leva, and G. Quattrocchi, “A Discrete-
Time Feedback Controller for Containerized Cloud Applications,”
in International Symposium on Foundations of Software Engineering.
ACM, 2016, pp. 217–228.

[31] L. Baresi, D. Y. X. Hu, G. Quattrocchi, and L. Terracciano, “NEP-
TUNE: Network- and GPU-aware Management of Serverless
Functions at the Edge,” in International Symposium on Software
Engineering for Adaptive and Self-Managing Systems. ACM/IEEE,
2022, pp. 144–155.

[32] I. Kumara, G. Quattrocchi, D. Tamburri, and W.-J. V. D. Heuvel,
“Quality assurance of heterogeneous applications: The sodalite
approach,” in Europ. Conference on Service-Oriented and Cloud Com-
puting. Springer, 2020, pp. 173–178.

[33] S. Shevtsov, M. Berekmeri, D. Weyns, and M. Maggio, “Control-
theoretical software adaptation: A systematic literature review,”

https://kubernetes.io
https://kubernetes.io
https://docs.aws.amazon.com/autoscaling/ec2/userguide/as-scaling-simple-step.html
https://docs.aws.amazon.com/autoscaling/ec2/userguide/as-scaling-simple-step.html
https://learn.microsoft.com/en-us/azure/azure-monitor/autoscale/autoscale-overview#what-is-autoscale
https://learn.microsoft.com/en-us/azure/azure-monitor/autoscale/autoscale-overview#what-is-autoscale
https://learn.microsoft.com/en-us/azure/azure-monitor/autoscale/autoscale-overview#what-is-autoscale
https://docs.aws.amazon.com/autoscaling/ec2/userguide/as-scaling-target-tracking.html
https://docs.aws.amazon.com/autoscaling/ec2/userguide/as-scaling-target-tracking.html
https://cloud.google.com/compute/docs/autoscaler/scaling-cloud-monitoring-metrics#configure_utilization_target
https://cloud.google.com/compute/docs/autoscaler/scaling-cloud-monitoring-metrics#configure_utilization_target
https://kubernetes.io/docs/tasks/run-application/horizontal-pod-autoscale/
https://kubernetes.io/docs/tasks/run-application/horizontal-pod-autoscale/
https://cloud.google.com/kubernetes-engine/docs/concepts/verticalpodautoscaler
https://cloud.google.com/kubernetes-engine/docs/concepts/verticalpodautoscaler
https://docs.aws.amazon.com/autoscaling/ec2/userguide/ec2-auto-scaling-scheduled-scaling.html
https://docs.aws.amazon.com/autoscaling/ec2/userguide/ec2-auto-scaling-scheduled-scaling.html
https://learn.microsoft.com/en-us/azure/azure-monitor/autoscale/tutorial-autoscale-performance-schedule#create-recurrence-profile
https://learn.microsoft.com/en-us/azure/azure-monitor/autoscale/tutorial-autoscale-performance-schedule#create-recurrence-profile
https://learn.microsoft.com/en-us/azure/azure-monitor/autoscale/tutorial-autoscale-performance-schedule#create-recurrence-profile
https://cloud.google.com/compute/docs/autoscaler#schedules
https://cloud.google.com/compute/docs/autoscaler#schedules
https://docs.aws.amazon.com/autoscaling/ec2/userguide/ec2-auto-scaling-predictive-scaling.html
https://docs.aws.amazon.com/autoscaling/ec2/userguide/ec2-auto-scaling-predictive-scaling.html

16

IEEE Transactions Software Engineering, vol. 44, no. 8, pp. 784–810,
2017.

[34] L. T. Biegler and V. M. Zavala, “Large-scale nonlinear program-
ming using IPOPT: An integrating framework for enterprise-wide
dynamic optimization,” Computers & Chemical Engineering, vol. 33,
no. 3, pp. 575–582, 2009.

[35] M. Kowal, M. Tschaikowski, M. Tribastone, and I. Schaefer, “Scal-
ing Size and Parameter Spaces in Variability-Aware Software
Performance Models,” in International Conference on Automated
Software Engineering. IEEE, 2015, pp. 407–417.

[36] S. Balsamo, A. Di Marco, P. Inverardi, and M. Simeoni, “Model-
based performance prediction in software development: A sur-
vey,” IEEE Transactions Software Engineering, vol. 30, no. 5, pp. 295–
310, 2004.

[37] H. Koziolek, “Performance evaluation of component-based soft-
ware systems: A survey,” Performance Evaluation, vol. 67, no. 8, pp.
634–658, 2010.

[38] W. J. Stewart, Probability, Markov chains, queues, and simulation.
Princeton university press, 2009.

[39] E. Incerto, M. Tribastone, and C. Trubiani, “Software performance
self-adaptation through efficient model predictive control,” in
Proceedings of the International Conference on Automated Software
Engineering, (ASE), 2017, pp. 485–496.

[40] ——, “Combined vertical and horizontal autoscaling through
model predictive control,” in Proceedings of the International Con-
ference on Parallel and Distributed Computing (Euro-Par), vol. 11014.
Springer, 2018, pp. 147–159.

[41] S. Brüggemann and C. Possieri, “On the use of difference of log-
sum-exp neural networks to solve data-driven model predictive
control tracking problems,” IEEE Control Systems Letters, vol. 5,
no. 4, pp. 1267–1272, 2020.

[42] R. P. Borase, D. Maghade, S. Sondkar, and S. Pawar, “A review
of pid control, tuning methods and applications,” International
Journal of Dynamics and Control, vol. 9, no. 2, pp. 818–827, 2021.

[43] M. Reiser and S. S. Lavenberg, “Mean-value analysis of closed
multichain queuing networks,” Journal of the ACM, vol. 27, no. 2,
pp. 313–322, 1980.

[44] D. A. Menascé and S. Bardhan, “TDQN: Trace-driven analytic
queuing network modeling of computer systems,” Journal of Sys-
tems and Software, vol. 147, pp. 162–171, 2019.

[45] A. Kattepur, “Towards Structured Performance Analysis of Indus-
try 4.0 Workflow Automation Resources,” in International Confer-
ence on Perf. Engineering. ACM, 2019, pp. 189–196.

[46] S. Dipietro, G. Casale, and G. Serazzi, “A Queueing Network
Model for Performance Prediction of Apache Cassandra,” in In-
ternational Conference on Perf. Evaluation Methodologies and Tools.
ACM, 2016.

[47] G. Casale, J. F. Pérez, and W. Wang, “QD-AMVA: Evaluating
systems with queue-dependent service requirements,” Perf. Evalu-
ation, vol. 91, pp. 80–98, 2015.

[48] C. A. Smith and A. B. Corripio, Principles and practices of automatic
process control. John wiley & sons, 2005.

[49] M. Maggio, A. V. Papadopoulos, and A. Leva, “On the use of
feedback control in the design of computing system components,”
Asian Journal of Control, vol. 15, no. 1, pp. 31–40, 2013.

[50] Archive Team, “Twitter Stream 2021-01,” https://archive.org/
details/archiveteam-twitter-stream-2021-01, [Online; 2022-09-01].

[51] A. Ali, R. Pinciroli, F. Yan, and E. Smirni, “Optimizing Inference
Serving on Serverless Platforms,” Proceedings of the VLDB Endow-
ment, vol. 15, no. 10, pp. 2071–2084, 2022.

[52] K. Zhou and J. C. Doyle, Essentials of robust control. Prentice Hall
Upper Saddle River, NJ, 1998, vol. 104.

[53] E. Incerto, A. Napolitano, and M. Tribastone, “Moving Horizon
Estimation of Service Demands in Queuing Networks,” in Interna-
tional Symposium on Modeling, Analysis, and Simulation of Computer
and Telecommunication Systems. IEEE, 2018, pp. 348–354.

[54] M. Copik, G. Kwasniewski, M. Besta, M. Podstawski, and T. Hoe-
fler, “Sebs: A serverless benchmark suite for function-as-a-service
computing,” in Proceedings of the 22nd International Middleware
Conference, 2021, pp. 64–78.

[55] G. Urdaneta, G. Pierre, and M. van Steen, “Wikipedia workload
analysis for decentralized hosting,” Elsevier Computer Networks,
vol. 53, no. 11, pp. 1830–1845, 2009.

[56] M. Abdullah, W. Iqbal, J. L. Berral, J. Polo, and D. Carrera, “Burst-
aware predictive autoscaling for containerized microservices,”
IEEE Transactions on Services Computing, 2020.

[57] K. Zheng, Y. Bai, and X. Wang, “Fctcon: Dynamic control of flow
completion time in data center networks for power efficiency,”
IEEE Transactions on Cloud Computing, vol. 9, no. 4, pp. 1467–1478,
2019.

[58] A. Ali, R. Pinciroli, F. Yan, and E. Smirni, “Batch: machine learning
inference serving on serverless platforms with adaptive batching,”
in International Conference for High Performance Computing, Network-
ing, Storage and Analysis. IEEE, 2020, pp. 1–15.

[59] J. Heyman, C. Byström, J. Hamrén, and H. Heyman, “Locust:
An open source load testing tool,” https://web.archive.org/web/
20221226091044/https://locust.io/.

[60] S. Kumar, T. Chen, R. Bahsoon, and R. Buyya, “Debtcom: Technical
debt-aware service recomposition in saas cloud,” IEEE Transactions
on Services Computing, 2023.

[61] K. Li, “Quantitative Modeling and Analytical Calculation of Elas-
ticity in Cloud Computing,” IEEE Transactions Cloud Computing,
vol. 8, no. 4, pp. 1135–1148, 2020.

[62] P. Ambati, N. Bashir, D. E. Irwin, and P. J. Shenoy, “Modeling and
Analyzing Waiting Policies for Cloud-Enabled Schedulers,” IEEE
Transactions Parallel Distributed Systems, vol. 32, no. 12, pp. 3081–
3100, 2021.

[63] X. Qin, B. Li, and L. Ying, “Distributed Threshold-based Offload-
ing for Large-Scale Mobile Cloud Computing,” in Conference on
Computer Communications. IEEE, 2021, pp. 1–10.

[64] F. Antonelli, V. Cortellessa, M. Gribaudo, R. Pinciroli, K. S. Trivedi,
and C. Trubiani, “Analytical modeling of performance indices un-
der epistemic uncertainty applied to cloud computing systems,”
Future Generation Computer Systems, vol. 102, pp. 746–761, 2020.

[65] C. Wohlin, P. Runeson, M. Höst, M. C. Ohlsson, B. Regnell, and
A. Wesslén, Experimentation in software engineering. Springer
Science & Business Media, 2012.

[66] A. Al-Dulaimy, J. Taheri, A. V. Papadopoulos, and T. Nolte,
“LOOPS: A Holistic Control Approach for Resource Management
in Cloud Computing,” in International Conference on Performance
Engineering. ACM, 2021, pp. 117–124.

[67] A. Al-Dulaimy, J. Taheri, A. Kassler, M. R. H. Farahabady, S. Deng,
and A. Zomaya, “Multiscaler: A multi-loop auto-scaling approach
for cloud-based applications,” IEEE Transactions Cloud Computing,
2020.

[68] W. Delnat, E. Truyen, A. Rafique, D. Van Landuyt, and W. Joosen,
“K8-Scalar: A Workbench to Compare Autoscalers for Container-
Orchestrated Database Clusters,” in International Conference on
Software Engineering for Adaptive and Self-Managing Systems, 2018,
p. 33–39.

[69] I. Pietri and R. Sakellariou, “Mapping virtual machines onto phys-
ical machines in cloud computing: A survey,” ACM Computing
Surveys, vol. 49, no. 3, pp. 1–30, 2016.

[70] L. Baresi and G. Quattrocchi, “A simulation-based comparison
between industrial autoscaling solutions and cocos for cloud
applications,” in International Conference on Web Services. IEEE,
2020, pp. 94–101.

[71] G. Yu, P. Chen, and Z. Zheng, “Microscaler: Automatic Scaling for
Microservices with an Online Learning Approach,” in International
Conference on Web Services. IEEE, 2019, pp. 68–75.

[72] V. Podolskiy, A. Jindal, and M. Gerndt, “IaaS Reactive Autoscal-
ing Performance Challenges,” in International Conference on Cloud
Computing. IEEE, 2018, pp. 954–957.

[73] F. Zhang, X. Tang, X. Li, S. U. Khan, and Z. Li, “Quantifying
cloud elasticity with container-based autoscaling,” Future Gener-
ation Computer Systems, vol. 98, pp. 672–681, 2019.

[74] S. N. Srirama, M. Adhikari, and S. Paul, “Application deployment
using containers with auto-scaling for microservices in cloud
environment,” Journal of Network and Computer Applications, vol.
160, p. 102629, 2020.

[75] T. Salah, M. J. Zemerly, C. Y. Yeun, M. Al-Qutayri, and Y. Al-
Hammadi, “Performance comparison between container-based
and VM-based services,” in International Conference on Innovations
in Clouds, Internet and Networks. IEEE, 2017, pp. 185–190.

[76] P. Padala, K.-Y. Hou, K. G. Shin, X. Zhu, M. Uysal, Z. Wang,
S. Singhal, and A. Merchant, “Automated control of multiple

https://archive.org/details/archiveteam-twitter-stream-2021-01
https://archive.org/details/archiveteam-twitter-stream-2021-01
https://web.archive.org/web/20221226091044/https://locust.io/
https://web.archive.org/web/20221226091044/https://locust.io/

17

virtualized resources,” in Europ. Conference on Computer Systems.
ACM, 2009, pp. 13–26.

[77] L. d. Moura and N. Bjørner, “Z3: An efficient SMT solver,” in
International Conference on Tools and Algorithms for the Construction
and Analysis of Systems. Springer, 2008, pp. 337–340.

[78] L. Funari, L. Petrucci, and A. Detti, “Storage-saving scheduling
policies for clusters running containers,” IEEE Transactions Cloud
Computing, 2021.

[79] V. Tadakamalla and D. A. Menascé, “Autonomic Elasticity Control
for Multi-Server Queues Under Generic Workload Surges in Cloud
Environments,” IEEE Transactions Cloud Computing, vol. 10, no. 2,
pp. 984–995, 2022.

[80] B. Cai, K. Li, Z. Laiping, and R. Zhang, “Less Provisioning: A
Hybrid Resource Scaling Engine for Long-running Services with
Tail Latency Guarantees,” IEEE Transactions Cloud Computing, 2020.

[81] J. Khamse-Ashari, I. Lambadaris, G. Kesidis, B. Urgaonkar, and
Y. Zhao, “A Cost-Efficient and Fair Multi-Resource Allocation
Mechanism for Self-Organizing Servers,” in Global Communications
Conference. IEEE, 2018, pp. 1–7.

[82] A. Ali, R. Pinciroli, F. Yan, and E. Smirni, “It’s not a Sprint, it’s
a Marathon: Stretching Multi-resource Burstable Performance in
Public Clouds,” in International Middleware Conference Industrial
Track. ACM, 2019, pp. 36–42.

[83] A. Biswas, S. Majumdar, B. Nandy, and A. El-Haraki, “An
Auto-Scaling Framework for Controlling Enterprise Resources on
Clouds,” in International Symposium on Cluster, Cloud and Grid
Computing. IEEE, 2015, pp. 971–980.

[84] G. Garbi, E. Incerto, and M. Tribastone, “Learning Queuing Net-
works by Recurrent Neural Networks,” in International Conference
on Performance Engineering. ACM, 2020, pp. 56–66.

[85] H. Sun, Z. Gui, S. Guo, Q. Qi, J. Wang, and J. Liao, “GSSP: Elimi-
nating Stragglers through Grouping Synchronous for Distributed
Deep Learning in Heterogeneous Cluster,” IEEE Transactions Cloud
Computing, 2021.

[86] B. Feng, Z. Ding, and C. Jiang, “Fast: A forecasting model with
adaptive sliding window and time locality integration for dynamic
cloud workloads,” IEEE Transactions on Services Computing, 2022.

[87] P. Osypanka and P. Nawrocki, “Qos-aware cloud resource pre-
diction for computing services,” IEEE Transactions on Services
Computing, 2022.

[88] E. Makridis, K. Deliparaschos, E. Kalyvianaki, A. Zolotas, and
T. Charalambous, “Robust dynamic cpu resource provisioning in
virtualized servers,” IEEE Transactions on Services Computing, 2020.

[89] Y. Li, F. Liu, Q. Chen, Y. Sheng, M. Zhao, and J. Wang, “Mar-
VeLScaler: A Multi-View Learning-Based Auto-Scaling System for
MapReduce,” IEEE Transactions Cloud Computing, vol. 10, no. 1, pp.
506–520, 2022.

[90] W. Iqbal, A. Erradi, M. Abdullah, and A. Mahmood, “Predictive
Auto-Scaling of Multi-Tier Applications Using Performance Vary-
ing Cloud Resources,” IEEE Transactions Cloud Computing, vol. 10,
no. 1, pp. 595–607, 2022.

[91] S. Farokhi, E. B. Lakew, C. Klein, I. Brandic, and E. Elmroth,
“Coordinating CPU and Memory Elasticity Controllers to Meet
Service Response Time Constraints,” in International Conference on
Cloud and Autonomic Computing. IEEE, 2015, pp. 69–80.

Giovanni Quattrocchi received his Ph.D. in
Computer Engineering in 2018 from Politecnico
di Milano, where he is currently a Junior Assis-
tant Professor (RTD-a). He was a visiting re-
searcher at University of California San Diego
and Imperial College London. His research in-
terests include self-adaptive systems, software
architectures, edge computing, and blockchain-
based systems.

Emilio Incerto is a Junior Assistant Profes-
sor (RTD-a) in Computer Science within the
SySMA research unit of IMT Lucca since 2021.
He received his Ph.D. in Computer Science in
2019 from the Gran Sasso Science Institute of
L’Aquila, Italy. His research focuses on model-
ing and controlling quantitative properties (e.g.,
response time), of software systems subject to
stringent extra-functional requirements.

Riccardo Pinciroli received M.S. (2014) and
Ph.D. (2018) degrees in computer engineering
from Politecnico di Milano. He is currently a Post-
doc Fellow in Computer Science at the Gran
Sasso Science Institute. His research interests
include stochastic modeling, performance evalu-
ation, energy efficiency, and uncertainty propa-
gation applied to cloud computing, data-centers,
and cyber-physical systems.

Catia Trubiani is an associate professor at the
Gran Sasso Science Institute (GSSI), Italy. Pre-
viously she collaborated with various interna-
tional research institutes like the Karlsruhe Insti-
tute of Technology in Germany, and the Imperial
College of London in UK. Her research interests
include quality-based modeling and analysis of
interacting heterogeneous distributed systems,
feedback strategies on software architectures,
more recently applied to cyber-physical systems.

Luciano Baresi is a full professor at the Po-
litecnico di Milano. Luciano was visiting profes-
sor at University of Oregon (USA) and visit-
ing researcher at University of Paderborn (Ger-
many). His research interests are in the broad
area of software engineering and include for-
mal approaches for modeling and specification
languages, distributed systems, service-based
applications and mobile, self-adaptive, and per-
vasive software systems.

	Introduction
	Industrial Approaches
	ScaleX
	Control Architecture

	QN-CTRL
	Control Architecture
	Efficient Steady-state Solution of Closed QNs
	Autoscaler Formulation
	QN Estimator formulation

	Evaluation
	Simulation-based experiments
	Results

	Cloud-based experiments
	Results

	Cost Analysis
	Lessons Learned
	Threats to Validity

	Related Work
	Conclusions
	Acknowledgements
	References
	Biographies
	Giovanni Quattrocchi
	Emilio Incerto
	Riccardo Pinciroli
	Catia Trubiani
	Luciano Baresi

