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Abstract. Refactoring is often needed to ensure that software systems
meet their performance requirements in deployments with di↵erent oper-
ational profiles, or when these operational profiles are not fully known or
change over time. This is a complex activity in which software engineers
have to choose from numerous combinations of refactoring actions. Our
paper introduces a novel approach that uses performance antipatterns
and stochastic modelling to support this activity. The new approach
computes the performance antipatterns present across the operational
profile space of a software system under development, enabling engineers
to identify operational profiles likely to be problematic for the analysed
design, and supporting the selection of refactoring actions when per-
formance requirements are violated for an operational profile region of
interest. We demonstrate the application of our approach for a software
system comprising a combination of internal (i.e., in-house) components
and external third-party services.

1 Introduction

Performance antipatterns [8,31] and stochastic modelling (e.g., using queueing
networks, stochastic Petri nets, and Markov models [7,16,33]) have long been
used in conjunction, to analyse performance of software systems and to drive sys-
tem refactoring when requirements are violated. End-to-end approaches support-
ing this analysis and refinement processes have been developed (e.g., [4,9,20]),
often using established tools for the simulation or formal verification of stochastic
models of the software system under development (SUD).

While these approaches can significantly speed up the development of sys-
tems that meet their performance requirements, they are only applicable when
the SUD operational profile is known and does not change over time. Both of
these are strong assumptions. In practice, software systems are often used in
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applications a↵ected by uncertainty, due both to incomplete knowledge of and
to changes in workloads, availability of shared resources, etc.

In this paper, we introduce a novel performance analysis and refactoring
approach that addresses this significant limitation of current solutions. The new
approach considers the uncertainty in the SUD operational profile by identifying
the performance antipatterns present in predefined operational profile regions.
These regions capture aleatoric and epistemic operational profile uncertainties
due to unavoidable changes in the environment (e.g., workload variations) and to
insu�ciently measured environment properties (e.g., CPU speed), respectively.

A few existing solutions [2,11,19] employ sensitivity analysis to assess the
robustness of software to variations in its operational profile. However, these so-
lutions are not interested in major operational profile changes like our approach,
and therefore focus on establishing the e↵ect of small operational profile varia-
tions on the performance of the SUD. In contrast, our new approach provides a
global perspective on the performance antipatterns associated with a wide range
of operational profiles. This perspective enables software engineers to identify
operational profile regions in which their SUD is likely to require refactoring,
and supports the selection of suitable refactoring actions for such regions. The
main contributions of this paper are:

1. We introduce the concept of a performance antipattern profile (i.e., a “map”
showing the antipatterns present in di↵erent regions from the operational
profile space of a SUD), and a method for synthesising such profiles for
systems comprising a mix of internal and external software components.

2. We present a tool-supported approach that uses our performance antipattern
profile synthesis method, and we define best practices for refactoring the
architecture of a SUD using performance antipattern profiles.

3. We demonstrate the application of our approach for a software system com-
prising a combination of internal (i.e., in-house) components and external
(i.e., third-party) services.

The remainder of the paper is organized as follows. Section 2 introduces a
software system that we use to illustrate the application of our approach through-
out the paper. Section 3 presents the new approach for the performance analysis
and refactoring of software systems, and Section 4 describes its application to
the service-based system from our motivating example. Section 5 compares our
solution with existing approaches. Finally, Section 6 summarises the benefits and
limitations of our approach, and suggests directions for future work.

2 Running Example

To illustrate the application of our approach, we consider a heterogeneous soft-
ware system comprising both internal components and external services. We
assume that the internal components are deployed on the private servers of the
organisation that owns the system. As such, the architecture and resources of
these components can be modified if needed. In contrast, the external services
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are accessed remotely from third-party providers and cannot be modified. These
services can only be replaced with (or can be used alongside) other services that
are functionally equivalent but may induce di↵erent performance.

2.1 System description
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Fig. 1. Workflow of the foreign currency
trading system (FOREX)

The system we use as a running ex-
ample is adapted from [14], and comes
from the foreign currency trading do-
main. The workflow implemented by
this “FOREX” system is shown in
Figure 1, and involves handling re-
quests sent by currency traders. Two
types of requests are possible: requests
that must be handled in a so-called
“expert” mode, and requests handled
in a “normal” mode. The request type
determines whether the system starts
with a “fundamental analysis” opera-
tion or a “market watch” operation.
Both of these operations use exter-
nal services. “Technical analysis” is
an operation provided by an inter-
nal component. This operation fol-
lows the market watch, and deter-
mines whether the trader’s objectives
(specified in the request) are satisfied
or not. If there is a conflict between these objectives and the results of the tech-
nical analysis, then the market watch is re-executed. Furthermore, the technical
analysis may return an error, i.e., an internal “alarm” operation is triggered
to inform the user about the erroneous result. The optimal results of either
technical or fundamental analysis (satisfied objectives/trade acceptance) lead to
the execution of an external “order” operation that completes the trade, and
is followed by an internal “notification” operation that confirms the successful
completion of the workflow.

2.2 External services

For the operations executed using external services, multiple services can be used
as equivalent alternatives or in some combination deemed suitable. Given n > 1
functionally equivalent services, three options for combining them are possible:

– Sequential (SEQ): first invoke service 1; if the invocation succeeds, use its
response; if it fails, then invoke service 2, etc., until service n is invoked, if
needed.
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– Parallel (PAR): invoke all n services at once, and use the first result that
comes back.

– Probabilistic (PROB): invoke one of the n available services, selected based
on a discrete probability distribution.

Therefore, we need to choose a “good” option (i.e., one that enables the system
to satisfy its performance requirements) starting from information about the
performance characteristics shown by each of these services, which we assume
known from either the service-level agreement (SLA) published by the providers
of these services, from our observations, or from both. Additionally, we assume
that all these services already satisfy the functional requirements.

2.3 Internal components

The internal operations are executed by software components belonging to the
organisation that “owns” the system, and running on their private hardware
nodes/servers. We assume that technical analysis (TA) has a much more signif-
icant impact on the performance of the system compared to the other two in-
house components (alarm and notification), which require only modest resources.
Consequently, it is necessary to identify possible antipattern-driven refactoring
actions for the TA component, to ensure that the system operates with an op-
timal performance. If and when needed, the refactoring actions we consider are:
(i) duplicate the TA software component and load balance the incoming requests
among the two TA instances; or (ii) replace the TA instance with a faster one.
These actions will increase the cost, but may be needed to satisfy the perfor-
mance requirements of the system.

2.4 Operational profile parameters

Several parameters of the system are outside the control of its developers. These
parameters represent the operational profile of the system. For our FOREX sys-
tem, they include the probability that a user request needs expert-mode han-
dling, and the probability of a transactions being performed after the execution
of the fundamental analysis operation (cf. Figure 1). The choice of these param-
eter ranges reflects, for instance, the engineers’ expectation about a particular
deployment of the system, numerical values will be provided in Section 4.

3 Approach

3.1 Overview

As shown in Figure 2, our approach to performance analysis and system refac-
toring comprises five steps. Starting for an initial system design proposed by
a software engineer, step 1 involves modelling the performance characteristics
of the system across its entire operational profile space (i.e., for all possible
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Fig. 2. Performance analysis and refactoring using antipattern profiles

values of the operational profile parameters). As such, the performance mod-
els produced by the modelling step are parametric models—models containing
(uninstantiated) parameters like the probabilities of receiving di↵erent types of
user requests. Our approach is not prescriptive about the type of performance
models that can be used in its modelling step. However, these models must
be able to capture the uncertainty associated with the operational profile of
the system. Therefore, in this paper we will use parametric discrete-time and
continuous-time Markov chains (parametric DTMCs and CTMCs).

Step 2 of the approach instantiates the parametric performance models for
combinations of parameter values covering the entire operational profile space.
A suitable discretization of the continuous parameters is used for this purpose.

The performance models are then analysed in step 3 to compute the perfor-
mance indices corresponding to all considered combinations of operational profile
parameter values. Existing analysis tools suitable for the adopted type of perfor-
mance models need to be used in this step—in the case of our DTMC and CTMC
models, a probabilistic model checker such as PRISM [24] or Storm [18](1).

Step 4 of the approach is using the performance indices and a portfolio of an-
tipattern detection rules to identify the performance antipatterns that occur for
di↵erent combinations of parameter values. This step produces a series of maps
that show the distribution of such antipatterns across the operational profile
space, thus to highlight problematic (from a performance viewpoint) areas.

Finally, step 5 assesses whether refactoring actions are required, because
performance antipatterns occur in regions of the operational profile space where
the deployed system is expected to operate. When refactoring is required, suit-
able refactoring actions (selected from a repository of such actions) are used to
update the system design. Updated system designs are then further evaluated
through re-executing the five steps of the approach, until a design with suitable
performance antipattern profiles is obtained.

1 An estimation of the e↵ort required to create and solve performance models is out
of this paper scope, as it may depend on the application domain complexity and the
analysts’ expertise.
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Table 1. Detection rule parameters.

Variable Scope Description

InvReq EXT/INT Number of invocations per request
AvgInvReq EXT/INT Average number of invocations per request
InvTime EXT/INT Number of invocations per time unit

AvgInvTime EXT/INT Average number of invocations per time unit
ServRate INT Service rate

Util INT Utilization
AvgUtil INT Average utilization

UtilThresh INT Fixed utilization threshold
RespTime EXT Response time

AvgRespTime EXT Average response time
PathProb EXT/INT Probability of path execution

AvgPathProb EXT/INT Average probability of path execution
PathProbThresh EXT/INT Fixed threshold for probability of path execution

3.2 Detection rules

The concept of Performance Antipattern has been introduced several years ago
[31] to define bad design practices that can induce performance problems in soft-
ware systems. This concept has been later formalized in First-Order Logics [17]
and then employed, in the context of Software Performance Engineering pro-
cesses, for the purpose of automating the detection and solution of performance
problems [29].

Inspired from the formalization provided in [17], we have here bounded the
detection rules of three performance antipatterns to the modeling and analy-
sis context of this paper. This binding is indeed required for any context, due
to specificities and possible limitations of the notations adopted. In our case,
Markov models of service-based software systems, on one side, o↵er the advan-
tage of easy deduction of stochastic indices and, on the other side, su↵er of lack
of separation between software and hardware parameters. The latter are in fact
implicitly taken into account in execution rates of operations.

Hereafter we report the formalization of the performance antipattern detec-
tion rules that we have used in this paper, while their parameters are defined in
Table 1, where we also specify whether each parameter is available for external
services (‘EXT’), for internal components (‘INT’), or for both (‘EXT/INT’).

- BLOB

General description

It occurs when a component performs most of the work of an appli-
cation, thus resulting in excessive components’ interactions that can
degrade performance.

Internal components

(InvReq > AvgInvReq) ^ (Util > UtilThresh) ^ (Util > AvgUtil)
External components

InvReq > AvgInvReq
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- CONCURRENT PROCESSING SYSTEMS (CPS)

General description

It occurs either when too many resources are dedicated to a compo-
nent (MAX) or when a component does not make use of available
resources (MIN).

Internal components

MAX - (Util > UtilThresh) ^ (Util > AvgUtil)
MIN - (Util < UtilThresh) ^ (Util < AvgUtil)

External components

MAX - PAR pattern ^ (RespT ime > AvgRespT ime)
MIN - PAR pattern ^ (RespT ime < AvgRespT ime)

- PIPE AND FILTER (P&F)

General description

It occurs when the slowest filter in a “pipe and filter” architecture
causes the system to have unacceptable throughput.

Internal and External components

(InvT ime > AvgInvT ime) ^ (PathProb > PathProbThresh) ^
^ (PathProb > AvgPathProb)

We remark that, in our context, the rules for detecting a specific antipattern
on internal components may di↵er from the ones defined for external services.
This is because the parameters available for external services are obviously more
limited than those of the internally developed components. For example, the
whole response time (i.e., service plus waiting time) of an external service is
usually negotiated in a service-level agreement, but it is di�cult to isolate the
net service time contribution to it, due to lack of control on the execution plat-
form and the amount of resources dedicated to the service by the provider. Both
indices can instead be estimated for internal components. As a consequence,
wherever the service time (or any derived index like utilization) appears in a
detection rule, the corresponding predicate has to be skipped/modified for ex-
ternal services. For this reason, in our case BLOB and CPS antipatterns present
di↵erent rules when applied to internal components or external services because,
as reported in Table 1, utilization cannot be estimated for the latter ones. In
the BLOB case, the predicates including utilization for internal components are
simply skipped in the external service formulation, because no other predicate
would make sense there. Instead, in the CPS case, the predicates on utiliza-
tion have been replaced with similar ones on response time for external services,
because the CPS definition is compliant with this modification.

We highlight that all predicates include parameters that evidently change
across di↵erent areas of the system operational profile (e.g., InvReq, Util),
hence we expect that the occurrences of the corresponding antipatterns vary
consequently. The only exceptions are the CPS rules for external services, be-
cause their parameters and thresholds do not depend on the operational profile.
Such rules refer to the response time that, for these components, is based on ser-
vice level agreement, and thus it cannot vary with the operational profile. This
will evidently reflect on our experimental results, where CPS on external services
will appear either everywhere or nowhere in the operational profile space.
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3.3 Synthesis of antipattern profiles

The more software applications are being used worldwide from di↵erent types
of users, the more di�cult is to estimate a representative average behavior of
users that induces a specific operational profile. In fact, not only users can have
di↵erent operational profiles depending on their locations [15], but even in the
same area the users behavior can (sometime radically) change over time [23].

Nevertheless, applications should show acceptable performance across di↵er-
ent operational profiles. A motivation for our work is that di↵erent operational
profiles can induce various performance problems, for example because a higher
execution frequency of a path can overload components involved in that path.
Hence, the idea is that, in order to identify the most appropriate refactoring
actions to apply for overcoming performance problems, these problems must be
identified across di↵erent operational profiles.
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Fig. 3. Example of antipattern profile

In this paper, we introduce the con-
cept of Performance Antipattern Pro-
file, which is a representation of per-
formance antipattern occurrences while
varying operational profile parameters.
As discussed above, di↵erent antipat-
tern occurrences are expected to ap-
pear in di↵erent areas of an operational
profile, as shown in Figure 3, where
two operational profile parameters vary
(from 0 to 1) on the axes, and di↵er-
ent coloured shapes in the graph in-
dicate the occurrences of di↵erent an-
tipatterns. Only with this information in hand, the performance experts can
suggest appropriate refactoring actions when the system falls within a certain
operational profile area, or even (in a proactive way) when the system is expected
to enter a specific operational profile area.

3.4 Refactoring

The notational aspects outlined in the previous section for antipattern detection
obviously reflect in the portfolio of refactoring actions aimed at removing per-
formance antipatterns. In general, a refactoring action modifies some available
architectural knob (e.g., the number of messages exchanged between two com-
ponents, the list of operations provided by a component) to remove a source of
the antipattern causes. The type and number of knobs depend on the adopted
notation, so the portfolio of refactoring actions does the same.

Our notation distinguished between internal components and external ser-
vices. The two types of system elements are characterized by a few common
parameters and by parameters specific to each type (see Table 1). Therefore,
our portfolio of refactoring actions is partitioned in two sets, as detailed below.
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Actions for internal components

– Change service rate - The modification of a component service rate can
be induced by several actions on the system, which could act on the hardware
platform or on the software architecture, such as: (i) redeploy the component
to a platform node with di↵erent hardware characteristics, (ii) replace some
devices of the platform node where the component is currently allocated,
(iii) redesign the software component so that its resource requests change,
(iv) split a component into two (or more) components and re-deploy them.

– Change number of threads - This action is always possible where the con-
trol on the number of threads is on the designer’s hands, and indeed for
internal components this is guaranteed.

Actions for external services

– Change pattern - We have considered three combination patterns for ex-
ternal services, that are: SEQ, PAR, and PROB (see Section 2.2). They are
used to combine (a subset of) the available instances of a certain external
service. This action requires to modify the combination pattern, by keeping
unchanged the set of combined services.

– Change the pattern parameters - Some patterns are regulated by param-
eters, in particular: PROB has a probability of each instance invocation, and
SEQ has a failure probability for each instance. A change in the PROB prob-
abilities is always feasible, because they are under full control of the designer.
Instead, a change in the failure probabilities within a SEQ pattern implies
that the designers are enabled for deeper modifications in the involved in-
stances that can induce di↵erent reliability, and this is not often the case.

– Change combination of service instances - This action requires to re-
place some (or all) of service instances that are combined to provide a certain
operation, by keeping unchanged the combination pattern.

Of course, the above actions can be combined together to study their joint
e↵ects on the performance improvement.

4 Evaluation

In this section, we first introduce the research questions that we intend to ad-
dress (see Section 4.1). Thereafter, we describe the experimental scenarios (see
Section 4.2) and discuss the obtained results (see Section 4.3). We finally re-
port the threats to validity in Section 4.4. The implemented tool, the mod-
els and the experimental results are available at: https://github.com/Fase20/
automated-antipattern-detection.

4.1 Research questions

The detection and solution of performance antipatterns largely depends on the
operational profile, which is determined by the end-users behaviour, thus it can

https://github.com/Fase20/automated-antipattern-detection
https://github.com/Fase20/automated-antipattern-detection
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only be known after the system deployment. Naturally, some antipatterns are
more a↵ected than others by the operational profile that can have a considerable
influence on the software system and, consequently, on its performance charac-
teristics. Through our experimentation, we aim at answering the following two
research questions:

– RQ1: Does our approach provide insights on the performance antipattern
profile of a specific design?

– RQ2: Does our approach support performance-driven refactoring decisions
on the basis of the performance antipattern profile?

In order to answer these questions, we apply our approach to the running
example introduced in Section 2.

4.2 Experimental scenarios

Table 2. System parameters.

Parameter Values

ExtReqs-rate 10s�1

QueueSize 10

TA-rate 3s�1

Alarm-rate 40s�1

Notif-rate 55s�1

MW-rate 19.92s�1

FA-rate 24.99s�1

Order-rate 19.09s�1

TA-threads 1

Table 2 reports the system parameters of
the default configuration we have used for
our experiments. It is structured in three
di↵erent groups. First, system settings, i.e.,
ExtReqs-rate (rate of external requests in-
coming to the system), and QueueSize (max-
imum number of queueing requests). These
values are both set to 10. Second, the rate
of internal components and external services,
e.g., TA-rate = 3 is the execution rate of the
Technical Analysis (TA) internal component.
For external services, this rate corresponds to
the inverse of the response time (as explained
in Section 3.2), and it was obtained through
the analysis of discrete-time Markov chain (DTMC) models of the service com-
binations (i.e., SEQ, PAR or PROB) used for the external operations of the
system. The model checker Storm was used to perform this analysis. Third, TA
(as internal component) has a number of threads that is initially set to 1, but
we provide a refactoring action that can change such number to modify the
parallelism degree for such component.

The operational profile space of our running example (see Figure 1) is fully de-
fined by the following branching point probabilities: (i) pExpertMode (pEM ), i.e.,
the probability of executing the workflow in expert mode; (ii) pPerformTransac-
tion (pPT ), i.e., the probability of successfully performing a transaction; (iii)
pObjectivesSatisfied (pOS) and pObjectivesNotMet (pON ), i.e., the proba-
bilities of satisfying or not the objectives, respectively. As a consequence, 1 �
(pOS + pON ) is the resulting probability of an error occurring.

The experimental scenarios that we analyze in the next section include the
variations of pEM and pPT within their full range [0, 1] with a 0.1 step. Given
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the space constraints, we decided to bind (pOS , pON ) to three scenarios, namely:
{(0.21, 0.78), (0.48, 0.01), (0.98, 0.01)}, which in the following we call scenarioA,
scenarioB , and scenarioC , respectively.

We have considered the following design changes for refactoring purposes:
(R1) - the service rate of the TA internal component can be modified from 3
to 6 jobs per second (i.e., it becomes faster when performing computations)
when TA is detected as an instance of a BLOB performance antipattern; (R2)
- a further thread of the TA component can be added to split the incoming
load and manage users’ requests, again as a solution of a BLOB performance
antipattern on TA; (R3) - change pattern (from SEQ to PAR) and service rate
(from 50.21 to 500) of the MW external service, when MW has been detected as
part of a Pipe and Filter antipattern; (R4) - change service rate (from 40.02 to
400) of the FA external service while keeping the same pattern (i.e., PAR), and
this is suggested as a solution of a Pipe and Filter antipattern that involves FA.

The results presented in the next section were obtained using the tool we
developed to implement the analysis and refactoring process from Figure 2.
This tool generates antipattern profiles using the antipattern detection rules
from Section 3.2 and performance indices computed through the probabilistic
model checking of a continuous-time Markov chain (CTMC) model of the entire
FOREX system from Figure 1. The model checker Storm is automatically in-
voked by the tool for this purpose. The tool and the parametric CTMC models
we used are available in our project’s GitHub repository.

4.3 Experimental Results

In order to answer RQ1, we have investigated the occurrence of performance
antipatterns across di↵erent operational profiles, so to obtain performance an-
tipattern profiles. Figures 4, 5, and 6 report the BLOB, CPS, and P&F detected
antipatterns, respectively, across the operational profile space. Each figure shows
the three considered scenarios for pOS and pON and, for each scenario, pEM varies
from 0 to 1 (with a step size of 0.1) on the x-axis , while pPT varies in the same
range on the y-axis. Antipatterns occurring in each operational profile point are
denoted by specific symbols.

We have here considered full ranges of the operational profile parameters,
even though, in each instant of its runtime, the system will fall in a single point
of the profile. Therefore, suitable refactoring actions depend on the area where
the running system profile falls in the considered time. In particular, if it runs in
an area where antipatterns do not occur, then no refactoring action is suggested.

In Figure 4(a) we can notice that in scenarioA (i.e., pOS = 0.21 and pON =
0.78) four di↵erent components are detected as BLOB antipatterns, specifically:
(i) BLOB(FA) occurs for low values of pEM only (i.e., up to 0.2); as opposite,
(ii) BLOB(TA) occurs for larger values of pEM ; (iii) BLOB(MW) shows a very
similar behaviour with respect to BLOB(TA) except in two corner cases where
it occurs alone; (iv) BLOB(Order) occurs for low values of pEM and high values
of pPT only.
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Fig. 4. BLOB antipattern instances while varying operational profiles.
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Fig. 5. CPS antipattern instances while varying operational profiles.

Figure 4(b) interestingly shows that in scenarioB (i.e., pOS = 0.48, and
pON = 0.01), BLOB(TA) and BLOB(MW) occur in a smaller portion of the
operational profile space, i.e., the right-most side (starting when pEM= 0.7).
Also the other antipatterns are subject to the probability changes, in fact both
BLOB(FA) and BLOB(Order) occur in a larger portion of the space, i.e., the
left-most side (up to pEM=0.5). This is because scenarioB moves a consistent
part of the workload far from the MW-TA loop, with respect to scenarioA.

Figure 4(c) illustrates the case of scenarioC (i.e., pOS = 0.98, and pON =
0.01), where further di↵erences appear. In particular, BLOB(TA) antipattern
does not occur anymore since the higher value of pOS induces less computation
in TA. BLOB(MW) is confined to three cases of large pEM values and low pPT

values. This is because the major load is going here to FA and Order that in
fact more widely are detected as BLOB antipatterns.

Figure 5 depicts the CPS antipattern profile that, as compared to the BLOB
one, does not considerably vary across di↵erent scenarios. For readability reasons,
CPS(FA)min is not reported in this figure, although it occurs across the whole
operational space for all the three scenarios. We recall that this is due to the CPS
detection rule that takes into account the response time for external services,
which does not change with users’ behaviour since it is a fixed value outcoming
from service-level agreements. CPS(TA)min is not a↵ected at all by the scenario
variations, as it always occurs in the same operational profile area. Instead,
the CPS(TA)max instances progressively decrease when increasing pOS . A pOS
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Fig. 6. P&F antipattern instances while varying operational profiles.
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Fig. 7. BLOB antipattern instances across di↵erent refactorings - scenarioA.

growth, in fact, relieves the MW-TA loop, thus inducing less unbalancing in its
components.

Figure 6 shows the P&F antipattern profile, where the antipattern instances
obviously refer to execution paths instead of single components/services. Hence,
di↵erent symbols represents di↵erent paths where one of the components/services
is the slowest filter. For example, MW/MWTAOrNo means that MW is the slow-
est filter of the MW-TA-Order-Notification path. Interesting variations of this
antipattern profile appear across scenarios, again driven by variations in the
operational profile parameter values.

Summary for RQ1: Our approach provides insights on the performance an-
tipattern profile of a specific design. In fact, we are able to identify considerable
variations in the detected antipattern instances while varying the operational
profile parameters.

In order to answer RQ2, we have investigated the occurrence of performance
antipatterns after applying refactoring actions that we have defined in Section
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Fig. 8. BLOB antipattern instances across di↵erent refactorings - scenarioB .

4.2, across the operational profile space. The most interesting cases are discussed
hereafter, and specifically: (i) Figures 7 and 8 report the BLOB refactoring e↵ects
on scenarioA and scenarioB , respectively; (ii) Figure 9 illustrates refactorings
for the CPS antipattern in scenarioA; (iii) Figure 10 shows the P&F refactoring
e↵ect on scenarioC .

In Figure 7, we can notice the following e↵ects of refactorings actions. Upon
(R1) application, as expected, less BLOB(TA) instances appear because this
refactoring consists of doubling the TA computation speed, while all other in-
stances remains unvaried. (R2) introduces a further TA thread and, in this case,
this induces less BLOB (TA) because more quickly requests are processed by
these two threads, and realistically FA becomes the overloaded one thus induc-
ing more BLOB(FA) instances to appear. (R3) modifies the rate of MW and
makes it much slower, thus inducing the side e↵ect of providing much less load
to TA; in fact all the BLOB(TA) instances disappear, and all the other instances
remain unvaried. (R4) decreases the rate of FA and, similarly to above, it has the
e↵ect of providing less load to TA, in fact the number of BLOB(TA) instances
decreases.

Figure 8 illustrates the e↵ect of BLOB refactorings on scenarioB . (R1)
refactoring consists of making the TA component two times faster, hence the
BLOB(TA) instance completely disappears from the operational space, while all
the other antipatterns are not a↵ected. (R2), introduces a further TA thread, but
in this case it occurs in a quite less stressed context with respect to scenarioA.
This aspect, together with the fact that two threads allow to drop less re-
quests, given that the queue length remains unvaried, in practice does not relieve
TA itself. This is the reason for BLOB(TA) to not disappear. The decrease of
BLOB(Order) instances is very likely due to the fact that, if performance in-
dices change for some components/services, then their calculated average value
change as well, hence inequalities in detection rules can change their results due
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Fig. 9. CPS antipattern instances across di↵erent refactorings - scenarioA.

to changes in the right-hand-side targets. (R3), similarly to Figure 7, modifies
the MW rate and makes it much slower, thus having the e↵ect of providing much
less load to TA, in fact all BLOB(TA) instances disappear. Also (R4) behaves
similarly to Figure 7.

Figure 9 depicts scenarioA (i.e., the pOS = 0.21 and pON = 0.78 case) when
considering CPS antipattern instances. We recall that the detection rule for CPS
on external services operates on response time values that do not change with the
operational profile. This leads that CPS(FA)min occurs in the whole operational
space (not only for the initial system, but also after R1, R2, and R3 refactorings).
Instead, for R4 refactoring, we found CPS(FA)max always occurring, and this is
due to nature of this refactoring that modifies the FA rate. For R3 refactoring,
besides CPS(FA)min, we also found CPS(MW)max always occurring, and this
is again due to the fact that R3 modifies the MW rate.

In addition to this, we can make the following specific considerations. (R1),
makes the TA component two times faster, hence less CPS(TA)max instances
appear, as expected. (R2) introduces a further TA thread but it is not beneficial
for the system, in fact the number of CPS(TA)max instances increase in the oper-
ational profile space. This e↵ect is again very likely due to the fact that, with two
threads, less requests are dropped than in the one thread case. Hence the work
on TA in practice increases. This apparent anomaly would be mitigated whether,
in the analysis, the number of dropped requests would be considered. (R3), de-
creases the MW rate, so it has the e↵ect of providing less load to TA; in fact
CPS(TA)max instances disappear, and (as mentioned above) a CPS(MW)max
instance appears in the whole operational profile space. (R4) decreases the FA
rate, thus having the e↵ect of increasing the number of CPS(TA)min instances
and decreasing the CPS(TA)max ones.

Figure 10 illustrates scenarioC (i.e., the pOS = 0.98 and pON = 0.01 case)
when considering P&F antipattern instances. Quite small variations can be ob-
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Fig. 10. P&F antipattern instances across di↵erent refactorings - scenarioC .

served here, as compared to other antipatterns and scenarios, always limitedly
to single points of the operational profile space. Some specific comments follow.
(R1) induces less P&F instances where TA is the slowest filter and, on the same
path, introduces more instances where Order is the slowest filter. This is an ex-
pected behavior due to the refactoring action that makes TA faster. (R2) has no
e↵ect at all. (R3) modifies the rate of MW component and makes it much slower,
thus inducing less load to TA. The e↵ect on the P&F antipattern is minimal and
coherent, because one more P&F(MW) instance and one less P&F(TA) instance
occur in the same path. (R4) only introduces one more P&F(MW) on the same
path as above, and this could be a side e↵ect of changing the average values of
performance indices.

Summary for RQ2: The approach supports performance-driven refactoring de-
cisions based on antipattern profiles, in that refactorings determine di↵erent
e↵ects on di↵erent regions of the operational profile space.

4.4 Threats to validity

Internal validity. In order to spot internal errors in our implementation for au-
tomatically detecting multiple performance antipatterns, we have thoroughly
tested it. We verified that the detected performance antipatterns follow the given
rules defined in their specification, along with the expected performance indica-
tors. Note that the detection and solution of performance antipatterns relies on
our previous experience in this domain [17], but in the future we are interested
to involve external users that will be enabled to add their own rules for detection
and refactoring.

External validity. We are aware that one case study is not enough to thor-
oughly validate the e↵ectiveness of our approach. Nevertheless, several experi-
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ments have been performed beside the proposed experimental scenarios, in order
to inspect the large number of variabilities in the operational profile space that
may a↵ect performance characteristics in unexpected ways. As future work, we
would like to better investigate the e↵ectiveness of our approach by applying it
to further case studies (including industrial applications).

5 Related Work

In literature, the operational profile has been recognized as a very relevant
factor in many domains, such as software reliability [27] and testing [30]. In
the context of performance analysis of software systems, there are many tech-
niques developed to act at: (i) design-time, i.e., providing model-based predic-
tions [6,12,32]; (ii) run-time, i.e., actual measurements derived from system mon-
itoring [10,13,35]. The refactoring, instead, is a more recent research direction,
and many issues arise when modifying di↵erent system abstractions [3,26,5].
This paper contributes in demonstrating that both performance analysis and
refactoring are a↵ected by operational profiles, and in the following we review
the related work aimed at pursuing this research direction.

In [22], a method for uncertainty analysis of the operational profile is pre-
sented, and the perturbation theory is used to evaluate how the execution rates
of software components are a↵ected by changes in the operational profile. Our
approach also considers execution rates, but it is intended to support designers
in the task of identifying performance-critical scenarios (i.e., when antipatterns
occur and their evolution when refactoring actions are applied). In [34], perfor-
mance antipatterns are used to isolate the problems’ root causes, and facilitating
their solutions; the TPC-W benchmark showed a relevant increase in the max-
imum throughput, thus to assess the usefulness of performance antipatterns.
However, the choice of representative usage profiles is recognized by the authors
as a limitation of the approach, since no directives are given for this scope. Our
approach, instead, is intentionally focused on exploiting the performance an-
tipatterns while considering the operational profile space as a first-class citizen
of the conducted analysis.

The static technique proposed in [25] detects and fixes performance bugs
(i.e., break out of the loop when a given condition becomes true). It is applied to
real-world Java and C/C++ applications, and it resulted very promising since a
large number of new performance bugs are discovered. Like [34], this approach
neglects the operational profile that instead may trigger the presence of further
performance problems. As opposite, our goal is to shed the light on the impor-
tance of the operational profile space, and our experimentation demonstrates
that performance problems and solutions indeed vary across such a space.

In [21], performance anomalies in testing data are detected through a new
metric, namely the transaction profile (TP), that is inferred from the testing
data along with the queueing network model of the testing system. The key in-
tuition is that TP is independent from the workload, it is sensitive to variations
caused by software updates only. Our approach also investigates what are the
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refactorings that are more responsible of performance issues, along with the char-
acteristics of the operational profile. In fact, refactorings produce regions of the
operational profile space that are di↵erently a↵ected, and these di↵erences can
be used by the designers in the task of understanding the suitability of a specific
design. The work more related to our approach is [28] where sequences of code
refactorings (for Java-like programs) are driven by the avoidance of antipatterns
(i.e., the BLOB only) and aimed at improving the system security. These refac-
torings consider the attack surface (i.e., how users/attackers access to software
functionalities) as an additional optimization objective. Our approach shares the
intuition that antipattern-based refactorings are beneficial for software quality
(i.e., performance in our case) and that the operational profile needs to be part
of the evaluation, but unlike [28] we target software design abstractions, and we
provide a global view of the antipatterns encountered by software systems across
their entire operational profile space. A systematic literature review on software
architecture optimization methods is provided in [1], but users’ operational pro-
files are neglected. This further motivates our work as promoter of a research
line that should foster more attention on the role of users and their e↵ects on
the available software resources.

Summarizing, to the best of our knowledge, there is no approach that focuses
on how the operational profile a↵ects the performance analysis and refactoring
of software systems, and the idea of adopting performance antipatterns for this
scope seems to be promising according to our experimentation.

6 Conclusion

We presented a novel approach that considers the operational profile space of a
system under development as a first class citizen in performance-driven analysis
and refactoring of software systems. Performance antipatterns profiles have been
used to support designers in the nontrivial task of identifying problematic (from
a performance perspective) areas of the operational profile space, and refactoring
actions are applied to improve the system performance in such areas. Experi-
mental results confirm the usefulness of the approach, and show how it can be
used to evaluate the suitability of a specific design in di↵erent regions of the
operational profile space.

In addition to the areas of future work mentioned in Section 4.4, we plan to
extend our approach with the ability to handle reliability and costs constraints,
and thus to support trade-o↵ analysis among multiple quality attributes. Finally,
the applicability of the approach could be extended by a portfolio of generic
refactoring actions (which need to be feasible with our modelling and analysis
techniques), and methods that automate the selection of suitable actions from
this portfolio.
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